BOLD fMRI and somatosensory evoked potentials are well correlated over a broad range of frequency content of somatosensory stimulation of the rat forepaw

[1]  Mathias Hoehn,et al.  Functional Uncoupling of Hemodynamic from Neuronal Response by Inhibition of Neuronal Nitric Oxide Synthase , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  A. M. Rush,et al.  Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons , 2007, The Journal of physiology.

[3]  J. Rosen,et al.  Animal studies of amygdala function in fear and uncertainty: Relevance to human research , 2006, Biological Psychology.

[4]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[5]  H. Merkle,et al.  BOLD and CBV‐weighted functional magnetic resonance imaging of the rat somatosensory system , 2006, Magnetic resonance in medicine.

[6]  M. Verhoye,et al.  Stimulation of the rat somatosensory cortex at different frequencies and pulse widths , 2006, NMR in biomedicine.

[7]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[8]  A. Dale,et al.  Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[10]  Nikolas Offenhauser,et al.  Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum , 2004, The Journal of physiology.

[11]  P. König,et al.  A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli. , 2004, Cerebral cortex.

[12]  H. Merkle,et al.  Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging , 2004, Magnetic resonance in medicine.

[13]  Peter Redgrave,et al.  Nonlinear coupling of neural activity and CBF in rodent barrel cortex , 2004, NeuroImage.

[14]  C. Moore Frequency-dependent processing in the vibrissa sensory system. , 2004, Journal of neurophysiology.

[15]  M. A. Neimark,et al.  Neural Correlates of Vibrissa Resonance Band-Pass and Somatotopic Representation of High-Frequency Stimuli , 2004, Neuron.

[16]  C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer's disease , 2004, Nature Reviews Neuroscience.

[17]  A. Toga,et al.  Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses , 2004, Neuron.

[18]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[19]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[20]  Iwao Kanno,et al.  Stimulus frequency dependence of the linear relationship between local cerebral blood flow and field potential evoked by activation of rat somatosensory cortex , 2004, Neuroscience Research.

[21]  O. Arthurs,et al.  What aspect of the fMRI BOLD signal best reflects the underlying electrophysiology in human somatosensory cortex? , 2003, Clinical Neurophysiology.

[22]  Martin Lauritzen,et al.  Context sensitivity of activity-dependent increases in cerebral blood flow , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Afonso C. Silva,et al.  Laminar specificity of functional MRI onset times during somatosensory stimulation in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Richard J Weinberg,et al.  Synaptic Localization of Nitric Oxide Synthase and Soluble Guanylyl Cyclase in the Hippocampus , 2002, The Journal of Neuroscience.

[25]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  F. Hyder,et al.  Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[28]  M. Lauritzen,et al.  Coupling and uncoupling of activity‐dependent increases of neuronal activity and blood flow in rat somatosensory cortex , 2001, The Journal of physiology.

[29]  S. Ogawa,et al.  An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Bernardi,et al.  Nitrergic neurons make synapses on dual-input dendritic spines of neurons in the cerebral cortex and the striatum of the rat: implication for a postsynaptic action of nitric oxide , 2000, Neuroscience.

[31]  Tim Otto,et al.  Behavioral and neuropsychological foundations of olfactory fear conditioning , 2000, Behavioural Brain Research.

[32]  Elliot A Stein,et al.  Regional cerebral blood flow responses to variable frequency whisker stimulation: an autoradiographic analysis , 2000, Brain Research.

[33]  B. Rosen,et al.  MRI measurement of the temporal evolution of relative CMRO2 during rat forepaw stimulation , 1999, Magnetic resonance in medicine.

[34]  A. Alonso,et al.  Biophysical Properties and Slow Voltage-Dependent Inactivation of a Sustained Sodium Current in Entorhinal Cortex Layer-II Principal Neurons , 1999, The Journal of general physiology.

[35]  Seong-Gi Kim,et al.  Simultaneous Blood Oxygenation Level-Dependent and Cerebral Blood Flow Functional Magnetic Resonance Imaging during Forepaw Stimulation in the Rat , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  K. Hossmann,et al.  Simultaneous recording of evoked potentials and T  *2 ‐weighted MR images during somatosensory stimulation of rat , 1999, Magnetic resonance in medicine.

[37]  J. Strupp Stimulate: A GUI based fMRI analysis software package , 1996, NeuroImage.

[38]  P. Worley,et al.  COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Jacques Seylaz,et al.  Effect of neuronal NO synthase inhibition on the cerebral vasodilatory response to somatosensory stimulation , 1996, Brain Research.

[40]  O. Keren,et al.  [Somatosensory evoked potentials]. , 1989, Harefuah.

[41]  L. Mendell,et al.  Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. , 1988, Journal of neurophysiology.

[42]  L. Mendell,et al.  Functional specialization of central projections from identified primary afferent fibers. , 1988, Journal of neurophysiology.

[43]  A. Vallbo,et al.  Sensations evoked from the glabrous skin of the human hand by electrical stimulation of unitary mechanosensitive afferents , 1981, Brain Research.

[44]  K. Hossmann,et al.  Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation , 1979, Pflügers Archiv.

[45]  Hiroshi Shibasaki,et al.  Somatosensory evoked potentials Diagnostic criteria and abnormalities in cerebral lesions , 1977, Journal of the Neurological Sciences.

[46]  Karl J. Friston Models of brain function in neuroimaging. , 2005, Annual review of psychology.

[47]  M. Lauritzen Reading vascular changes in brain imaging: is dendritic calcium the key? , 2005, Nature Reviews Neuroscience.

[48]  M. C. Angulo,et al.  Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation , 2003, Nature Neuroscience.

[49]  M. Trulsson,et al.  Periodic microstimulation of single mechanoreceptive afferents produces frequency-following responses in human EEG. , 1997, Journal of neurophysiology.

[50]  A Villringer,et al.  Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. , 1995, Cerebrovascular and brain metabolism reviews.

[51]  Terence W. Picton,et al.  Human event-related potentials , 1988 .

[52]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[53]  J. Nicholls From neuron to brain , 1976 .