A q-analogue of the type A Dunkl operator and integral kernel
暂无分享,去创建一个
[1] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[2] Charles F. Dunkl,et al. Differential-difference operators associated to reflection groups , 1989 .
[3] I. Cherednik. A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , 1991 .
[4] Charles F. Dunkl,et al. Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.
[5] Charles F. Dunkl,et al. Hankel transforms associated to finite reflection groups , 1992 .
[6] Anatol N. Kirillov,et al. Affine Hecke algebras and raising operators for Macdonald polynomials , 1996 .
[7] Rodrigues Formulas for the Macdonald Polynomials , 1996, q-alg/9607025.
[8] K. Mimachi,et al. A reproducing kernel for nonsymmetric Macdonald polynomials , 1996, q-alg/9610014.
[9] Jyoichi Kaneko. $q$-Selberg integrals and Macdonald polynomials , 1996 .
[10] T. H. Baker,et al. Nonsymmetric Jack polynomials and integral kernels , 1996 .
[11] A new scalar product for nonsymmetric Jack polynomials , 1996, q-alg/9608013.
[12] The Calogero-Sutherland model and polynomials with prescribed symmetry , 1996, solv-int/9609010.
[13] Intertwining operators and polynomials associated with the symmetric group , 1998 .
[14] Michel Lassalle,et al. Coefficients binomiaux généralisés et polynômes de Macdonald , 1998 .