High irradiance performance of metal halide perovskites for concentrator photovoltaics

[1]  T. Edvinsson,et al.  Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  J. Nelson,et al.  Identifying Dominant Recombination Mechanisms in Perovskite Solar Cells by Measuring the Transient Ideality Factor , 2018, Physical Review Applied.

[3]  M. Johnston,et al.  Hybrid Perovskites: Prospects for Concentrator Solar Cells , 2018, Advanced science.

[4]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[5]  Stephen R. Okoniewski,et al.  Front Cover: Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction (ChemPhysChem 1/2018) , 2018 .

[6]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[7]  Henry J. Snaith,et al.  Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions , 2017 .

[8]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[9]  W. Tress Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open‐Circuit Voltage and Low Recombination , 2017 .

[10]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[11]  W. Warta,et al.  Solar cell efficiency tables (version 50) , 2017 .

[12]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[13]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[14]  Konrad Wojciechowski,et al.  Efficient and Air‐Stable Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells with n‐Doped Organic Electron Extraction Layers , 2017, Advanced materials.

[15]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[16]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[17]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[18]  Jong-In Shim,et al.  On the ideality factor of the radiative recombination current in semiconductor light-emitting diodes , 2016 .

[19]  J. Nelson,et al.  Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis , 2016, Nature Communications.

[20]  Matteo Chiesa,et al.  Tracking-integrated systems for concentrating photovoltaics , 2016, Nature Energy.

[21]  Wei Lin Leong,et al.  Identifying Fundamental Limitations in Halide Perovskite Solar Cells , 2016, Advanced materials.

[22]  Yecheng Zhou,et al.  A numerical model for charge transport and energy conversion of perovskite solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[23]  B. Marí,et al.  Dependence of perovskite solar cells performance on temperature and solar irradiation , 2015, 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC).

[24]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[25]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[26]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[27]  J. Durrant,et al.  Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns , 2014, Advanced materials.

[28]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[29]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[30]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[31]  David L. King,et al.  System Performance Considerations for Low-Concentration Linear-Focus Silicon-Based Photovoltaic Modules , 2012, IEEE Journal of Photovoltaics.

[32]  Frederik C. Krebs,et al.  Origin of size effect on efficiency of organic photovoltaics , 2011 .

[33]  Jing Li,et al.  InGaN/GaN multiple quantum well concentrator solar cells , 2010 .

[34]  Frederik C. Krebs,et al.  Effects of concentrated sunlight on organic photovoltaics , 2010 .

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[36]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .