Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number

We consider error estimates for stabilized finite element approximations of the two-dimensional Navier–Stokes’ equations on the unit square with periodic boundary conditions. The estimates for the vorticity are obtained in a weak norm that can be related to the norms of filtered quantities. L2-norm estimates are obtained for the velocities. Under the assumption of the existence of a certain decomposition of the solution, into large eddies and small fine scale fluctuations, the constants of the estimates are proven to be independent of the Reynolds number. Instead they depend on the L∞-norm of the initial vorticity and an exponential with factor proportional to the L∞-norm of the gradient of the large eddies. The main error estimates are on a posteriori form, but for certain stabilized methods the residuals may be upper bounded uniformly, leading to robust a priori error estimates.

[1]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[2]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[3]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[4]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[5]  On the boundedness of first derivatives for solutions to the Neumann–Laplace problem in a convex domain , 2009 .

[6]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[7]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[8]  Alexandre Ern,et al.  The discrete maximum principle for stabilized finite element methods , 2003 .

[9]  Erik Burman,et al.  Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation , 2007 .

[10]  W. Layton,et al.  Approximating local averages of fluid velocities: the equilibrium Navier-Stokes equations , 2004 .

[11]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[12]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[13]  A. Alexandrou Himonas,et al.  Non-Uniform Dependence on Initial Data of Solutions to the Euler Equations of Hydrodynamics , 2010 .

[14]  Volker John An assessment of two models for the subgrid scale tensor in the rational LES model , 2005 .

[15]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[16]  Lars B. Wahlbin,et al.  Best approximation property in the W1∞ norm for finite element methods on graded meshes , 2011, Math. Comput..

[17]  Johan Hoffman,et al.  Stability of the dual Navier-Stokes equations and efficient computation of mean output in turbulent flow using adaptive DNS/LES , 2006 .

[18]  Volker John,et al.  FINITE ELEMENT ERROR ANALYSIS OF SPACE AVERAGED FLOW FIELDS DEFINED BY A DIFFERENTIAL FILTER , 2004 .

[19]  Erik Burman,et al.  Robust error estimates in weak norms for advection dominated transport problems with rough data , 2013, 1303.1964.

[20]  Endre Süli,et al.  A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.

[21]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[22]  Ridgway Scott,et al.  Optimal L°° Estimates for the Finite Element Method on Irregular Meshes* , 2010 .

[23]  Chi-Wang Shu,et al.  A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows , 2000 .

[24]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .