Identification in the Limit of k, l-Substitutable Context-Free Languages

Recently Clark and Eyraud (2005, 2007) have shown that substitutable context-free languages are polynomial-time identifiable in the limit from positive data. Substitutability in context-free languages can be thought of as the analogue of reversibility in regular languages. While reversible languages admit a hierarchy, namely k-reversible regular languages for each nonnegative integer k, Clark and Eyraud targeted the subclass of context-free languages that corresponds to zero-reversible regular languages only. Following Clark and Eyraud's proposal, this paper introduces a hierarchy of substitutable context-free languages as the analogue of that of k-reversible regular languages and shows that each class in the hierarchy is also polynomial-time identifiable in the limit from positive data.

[1]  Satoshi Kobayashi,et al.  Identifiability of Subspaces and Homomorphic Images of Zero-Reversible Languages , 1997, ALT.

[2]  Erkki Mäkinen On inferring zero-reversible languages , 2000, Acta Cybern..

[3]  Takashi Yokomori,et al.  Polynomial-time identification of very simple grammars from positive data , 2003, Theor. Comput. Sci..

[4]  Alexander Clark,et al.  PAC-Learning Unambiguous NTS Languages , 2006, ICGI.

[5]  Joachim Niehren,et al.  Interactive learning of node selecting tree transducer , 2006, Machine Learning.

[6]  Joost Engelfriet An Elementary Proof of Double Greibach Normal Form , 1992, Inf. Process. Lett..

[7]  Daniel J. Rosenkrantz,et al.  Matrix Equations and Normal Forms for Context-Free Grammars , 1967, JACM.

[8]  Etsuji Tomita,et al.  A Fast Algorithm for Checking the Inclusion for Very Simple Deterministic Pushdown Automata , 1993 .

[9]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[10]  Alexander Clark,et al.  Polynomial Identification in the Limit of Substitutable Context-free Languages , 2005 .

[11]  Thomas Zeugmann,et al.  Learning indexed families of recursive languages from positive data: A survey , 2008, Theor. Comput. Sci..

[12]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[13]  D. Angluin Negative Results for Equivalence Queries , 1990, Machine Learning.

[14]  Satoshi Kobayashi Iterated Transductions and Efficient Learning from Positive Data: A Unifying View , 2000, ICGI.

[15]  Géraud Sénizergues,et al.  The Equivalence and Inclusion Problems for NTS Languages , 1985, J. Comput. Syst. Sci..

[16]  Rémi Eyraud,et al.  Polynomial Identification in the limit of context-free substitutable languages , 2007 .

[17]  Colin de la Higuera,et al.  Characteristic Sets for Polynomial Grammatical Inference , 1997, Machine Learning.

[18]  José M. Sempere Learning Reversible Languages with Terminal Distinguishability , 2006, ICGI.

[19]  Luc Boasson,et al.  NTS Languages Are Deterministic and Congruential , 1985, J. Comput. Syst. Sci..

[20]  Timo Knuutila,et al.  Polynomial Time Algorithms for Learning k -Reversible Languages and Pattern Languages with Correction Queries , 2007, ALT.

[21]  Amaury Habrard,et al.  A Polynomial Algorithm for the Inference of Context Free Languages , 2008, ICGI.

[22]  Alexander Clark,et al.  Identification in the Limit of Substitutable Context-Free Languages , 2005, ALT.

[23]  Satoshi Kobayashi,et al.  Learning Approximately Regular Languages with Reversible Languages , 1997, Theor. Comput. Sci..

[24]  Takashi Yokomori Erratum to "Polynomial-time identification of very simple grammars from positive data" [Theoret. Comput. Science 298 (2003) 179-206] , 2007, Theor. Comput. Sci..

[25]  Lillian Lee,et al.  Learning of Context-Free Languages: A Survey of the Literature , 1996 .

[26]  Sheila A. Greibach,et al.  A New Normal-Form Theorem for Context-Free Phrase Structure Grammars , 1965, JACM.

[27]  Colin de la Higuera,et al.  A bibliographical study of grammatical inference , 2005, Pattern Recognit..

[28]  Satoshi Kobayashi,et al.  On Approximately Identifying Concept Classes in the Limit , 1995, ALT.