Implications of an extended fractal hydrodynamic model

AbstractConsidering that the motions of the particles take place on continuous but non-differentiable curves, i.e. on fractals with constant fractal dimension, an extended scale relativity model in its hydrodynamic version is built. In this approach, static (particle in a box and harmonic oscillator) and time-dependent (free particle etc.) systems are analyzed. The static systems can be associated with a coherent fractal fluid (of superconductor or of super-fluid types behavior), whose particles are moving on stationary trajectories. The complex speed field of the fractal fluid proves to be essential: the zero value of the real (differentiable) part specifies the coherence of the fractal fluid, while the non-zero value of the imaginary (non-differentiable or fractal) part selects, through some “quantization” relations, the “stationary” trajectories (that may correspond to the observables from quantum mechanics) of the fractal fluid particles. Moreover, the momentum transfer in the fractal fluid is achieved only through the fractal component of the complex speed field. The free time-dependent systems can be associated with an incoherent fractal fluid, and both the differentiable and fractal components of complex speed field are inhomogeneous in fractal coordinates due to the action of a fractal potential. It exist momentum transfer on both speed components and the “observable” in the form of an uniform motion is generated through a specific mechanism of “vacuum” polarization induced by the same fractal potential. The analysis on the fractal fluid specifies conductive properties in the case of movements synchronization both on differentiable and fractal scales, and convective properties in the absence of synchronization.

[1]  F. Halbwachs,et al.  Théorie relativiste des Fluides à Spin , 1961 .

[2]  L. Conde,et al.  Multiple double layers in a glow discharge , 1994 .

[3]  P. Ioannou,et al.  El Naschie's ε (∞) space-time, hydrodynamic model of scale relativity theory and some applications , 2007 .

[4]  Maricel Agop,et al.  On the vacuum status in Weyl–Dirac theory , 2008 .

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  R. Schrittwieser,et al.  Elementary processes at the origin of the generation and dynamics of multiple double layers in DP machine plasma , 2004 .

[7]  Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.

[8]  Jacky Cresson Non-differentiable variational principles , 2005 .

[9]  L. Nottale Scale Relativity and Schrödinger's Equation , 1998 .

[10]  Erwin Schrödinger,et al.  Collected Papers on Wave Mechanics , 1928 .

[11]  G Ord,et al.  Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .

[12]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[13]  Laurent Nottale,et al.  On the transition from the classical to the quantum regime in fractal space-time theory , 2005 .

[14]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[15]  A. C. Gaeris,et al.  Internal structure and expansion dynamics of laser ablation plumes into ambient gases , 2003 .

[16]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[17]  Gabriel Ciobanu,et al.  El Naschie’s ε(∞) space–time and new results in scale relativity theories , 2006 .

[18]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[19]  M. Agop,et al.  Experimental and theoretical investigations of a laser-produced aluminum plasma. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  P. Nica,et al.  Fractal model of the atom and some properties of the matter through an extended model of scale relativity , 2008 .

[21]  A. C. Phillips,et al.  Introduction to Quantum Mechanics , 2003 .

[22]  Argoul,et al.  Golden mean arithmetic in the fractal branching of diffusion-limited aggregates. , 1992, Physical review letters.

[23]  E. Bacry,et al.  BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES , 1993 .

[24]  P. Ioannou,et al.  Superconductivity by means of the subquantum medium coherence , 2005 .

[25]  Gravitational structure formation in scale relativity , 2003, astro-ph/0310036.

[26]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[27]  Jacky Cresson,et al.  Quantum derivatives and the Schrödinger equation , 2004 .

[28]  L. Spitzer Physics of fully ionized gases , 1956 .

[29]  J. B. Dance,et al.  X-Rays From Laser Plasmas: Generation and Applications , 1998 .

[30]  I. Prigogine,et al.  Quantum mechanics, diffusion and chaotic fractals , 1995 .

[31]  J. Argyris,et al.  Fractal space, cosmic strings and spontaneous symmetry breaking , 2001 .

[32]  M. Murakami,et al.  Ion energy spectrum of expanding laser-plasma with limited mass , 2005 .

[33]  A. R. El-Nabulsi Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents , 2009 .

[34]  Laurent Nottale,et al.  The scale-relativity program , 1999 .

[35]  Intense heavy ion beams as a tool to induce high‐energy‐density states in matter , 2003 .

[36]  R. Festa,et al.  Clues to discretization on the cosmic scale , 1997 .

[37]  Laurent Nottale,et al.  Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .

[38]  Michel L. Lapidus,et al.  Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics , 2005 .

[39]  M. Naschie Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment , 2006 .

[40]  Maricel Agop,et al.  Experimental and Theoretical Aspects of Aluminum Expanding Laser Plasma , 2009 .

[41]  M. S. El Naschie,et al.  From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold , 2005 .

[42]  Peter Weibel,et al.  Space Time Physics and Fractality , 2005 .

[43]  J. Z. Zhu,et al.  The finite element method , 1977 .

[44]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[45]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[46]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[47]  A. R. El-Nabulsi Fractional Nottale’s Scale Relativity and emergence of complexified gravity , 2009 .

[48]  L. Nottale,et al.  Non-Abelian gauge field theory in scale relativity , 2006, hep-th/0605280.

[49]  H. E. Wilhelm Hydrodynamic model of quantum mechanics , 1970 .

[50]  Nadezhda M. Bulgakova,et al.  Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet , 1998 .

[51]  L. Nottale Scale-relativistic cosmology , 2003 .