Implications of an extended fractal hydrodynamic model
暂无分享,去创建一个
Maricel Agop | P. Nica | Cristian Focsa | Silviu Gurlui | M. Agop | C. Focsa | S. Gurlui | P. Nica | V. P. Paun | M. Colotin | V. Paun | M. Colotin
[1] F. Halbwachs,et al. Théorie relativiste des Fluides à Spin , 1961 .
[2] L. Conde,et al. Multiple double layers in a glow discharge , 1994 .
[3] P. Ioannou,et al. El Naschie's ε (∞) space-time, hydrodynamic model of scale relativity theory and some applications , 2007 .
[4] Maricel Agop,et al. On the vacuum status in Weyl–Dirac theory , 2008 .
[5] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[6] R. Schrittwieser,et al. Elementary processes at the origin of the generation and dynamics of multiple double layers in DP machine plasma , 2004 .
[7] Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.
[8] Jacky Cresson. Non-differentiable variational principles , 2005 .
[9] L. Nottale. Scale Relativity and Schrödinger's Equation , 1998 .
[10] Erwin Schrödinger,et al. Collected Papers on Wave Mechanics , 1928 .
[11] G Ord,et al. Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .
[12] L. Ballentine. Quantum mechanics : a modern development , 1998 .
[13] Laurent Nottale,et al. On the transition from the classical to the quantum regime in fractal space-time theory , 2005 .
[14] Alan V. Oppenheim,et al. Discrete-Time Signal Pro-cessing , 1989 .
[15] A. C. Gaeris,et al. Internal structure and expansion dynamics of laser ablation plumes into ambient gases , 2003 .
[16] L. Ballentine,et al. Quantum mechanics , 1989 .
[17] Gabriel Ciobanu,et al. El Naschie’s ε(∞) space–time and new results in scale relativity theories , 2006 .
[18] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[19] M. Agop,et al. Experimental and theoretical investigations of a laser-produced aluminum plasma. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] P. Nica,et al. Fractal model of the atom and some properties of the matter through an extended model of scale relativity , 2008 .
[21] A. C. Phillips,et al. Introduction to Quantum Mechanics , 2003 .
[22] Argoul,et al. Golden mean arithmetic in the fractal branching of diffusion-limited aggregates. , 1992, Physical review letters.
[23] E. Bacry,et al. BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES , 1993 .
[24] P. Ioannou,et al. Superconductivity by means of the subquantum medium coherence , 2005 .
[25] Gravitational structure formation in scale relativity , 2003, astro-ph/0310036.
[26] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[27] Jacky Cresson,et al. Quantum derivatives and the Schrödinger equation , 2004 .
[28] L. Spitzer. Physics of fully ionized gases , 1956 .
[29] J. B. Dance,et al. X-Rays From Laser Plasmas: Generation and Applications , 1998 .
[30] I. Prigogine,et al. Quantum mechanics, diffusion and chaotic fractals , 1995 .
[31] J. Argyris,et al. Fractal space, cosmic strings and spontaneous symmetry breaking , 2001 .
[32] M. Murakami,et al. Ion energy spectrum of expanding laser-plasma with limited mass , 2005 .
[33] A. R. El-Nabulsi. Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents , 2009 .
[34] Laurent Nottale,et al. The scale-relativity program , 1999 .
[35] Intense heavy ion beams as a tool to induce high‐energy‐density states in matter , 2003 .
[36] R. Festa,et al. Clues to discretization on the cosmic scale , 1997 .
[37] Laurent Nottale,et al. Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .
[38] Michel L. Lapidus,et al. Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics , 2005 .
[39] M. Naschie. Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment , 2006 .
[40] Maricel Agop,et al. Experimental and Theoretical Aspects of Aluminum Expanding Laser Plasma , 2009 .
[41] M. S. El Naschie,et al. From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold , 2005 .
[42] Peter Weibel,et al. Space Time Physics and Fractality , 2005 .
[43] J. Z. Zhu,et al. The finite element method , 1977 .
[44] P. Mora,et al. Plasma expansion into a vacuum. , 2003, Physical review letters.
[45] D. Ferry,et al. Transport in nanostructures , 1999 .
[46] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[47] A. R. El-Nabulsi. Fractional Nottale’s Scale Relativity and emergence of complexified gravity , 2009 .
[48] L. Nottale,et al. Non-Abelian gauge field theory in scale relativity , 2006, hep-th/0605280.
[49] H. E. Wilhelm. Hydrodynamic model of quantum mechanics , 1970 .
[50] Nadezhda M. Bulgakova,et al. Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet , 1998 .
[51] L. Nottale. Scale-relativistic cosmology , 2003 .