The Zigzag Path of a Pseudo-Triangulation

We define the zigzag path of a pseudo-triangulation, a concept generalizing the path of a triangulation of a point set. The pseudo-triangulation zigzag path allows us to use divide-and-conquer type of approaches for suitable (i.e., decomposable) problems on pseudo-triangulations. For this we provide an algorithm that enumerates all pseudo-triangulation zigzag paths (of all pseudo-triangulations of a given point set with respect to a given line) in O(n 2) time per path and O(n 2) space, where n is the number of points. We illustrate applications of our scheme which include a novel algorithm to count the number of pseudo-triangulations of a point set.

[1]  Oswin Aichholzer The path of a triangulation , 1999, SCG '99.

[2]  Francisco Santos,et al.  Expansive Motions and the Polytope of Pointed Pseudo-Triangulations , 2002 .

[3]  Sergei Bespamyatnikh,et al.  An efficient algorithm for enumeration of triangulations , 2002 .

[4]  Adrian Dumitrescu,et al.  Enumerating Triangulation Paths , 2000, CCCG.

[5]  Bettina Speckmann,et al.  Allocating Vertex π-Guards in Simple Polygons via Pseudo-Triangulations , 2003, SODA '03.

[6]  Bettina Speckmann,et al.  Kinetic Collision Detection for Simple Polygons , 2002, Int. J. Comput. Geom. Appl..

[7]  Sergey Bereg,et al.  Enumerating pseudo-triangulations in the plane , 2005, Comput. Geom..

[8]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[9]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[10]  Ileana Streinu,et al.  A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[11]  Michael T. Goodrich,et al.  Dynamic Ray Shooting and Shortest Paths in Planar Subdivisions via Balanced Geodesic Triangulations , 1997, J. Algorithms.

[12]  Jack Snoeyink,et al.  Counting and enumerating pseudo-triangulations with the greedy flip algorithm ∗ , 2005 .

[13]  Leonidas J. Guibas,et al.  Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.

[14]  David Avis,et al.  Computational experience with the reverse search vertex enumeration algorithm , 1998 .

[15]  Francisco Santos,et al.  The polytope of non-crossing graphs on a planar point set , 2004, ISSAC '04.

[16]  Michel Pocchiola,et al.  Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..

[17]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[18]  Leonidas J. Guibas,et al.  Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..