A tour of structural genomics

Structural genomics projects aim to provide an experimental or computational three-dimensional model structure for all of the tractable macromolecules that are encoded by complete genomes. To this end, pilot centres worldwide are now exploring the feasibility of large-scale structure determination. Their experimental structures and computational models are expected to yield insight into the molecular function and mechanism of thousands of proteins. The pervasiveness of this information is likely to change the use of structure in molecular biology and biochemistry.

[1]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[2]  J. Kendrew,et al.  Comparison Between the Amino-Acid Sequences of Sperm Whale Myoglobin and of Human Hæmoglobin , 1961, Nature.

[3]  Benno P. Schoenborn,et al.  Neutron diffraction reveals oxygen–histidine hydrogen bond in oxymyoglobin , 1981, Nature.

[4]  M. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. , 1984, Journal of molecular biology.

[5]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[6]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[7]  A. Lesk,et al.  Determinants of a protein fold. Unique features of the globin amino acid sequences. , 1987, Journal of molecular biology.

[8]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[9]  W. Kabsch,et al.  Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Levitt,et al.  Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core , 1993, Current Biology.

[11]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[12]  R A Sayle,et al.  RASMOL: biomolecular graphics for all. , 1995, Trends in biochemical sciences.

[13]  J F Gibrat,et al.  Surprising similarities in structure comparison. , 1996, Current opinion in structural biology.

[14]  W R Taylor,et al.  SSAP: sequential structure alignment program for protein structure comparison. , 1996, Methods in enzymology.

[15]  J. Wootton,et al.  Analysis of compositionally biased regions in sequence databases. , 1996, Methods in enzymology.

[16]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[17]  G. Montelione,et al.  Automated analysis of protein NMR assignments using methods from artificial intelligence. , 1997, Journal of molecular biology.

[18]  J. Thornton,et al.  Tess: A geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites , 1997, Protein science : a publication of the Protein Society.

[19]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[20]  K. Garcia,et al.  T-cell receptor structure and TCR complexes. , 1997, Current opinion in structural biology.

[21]  J Skolnick,et al.  Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. , 1998, Journal of molecular biology.

[22]  A. Sali 100,000 protein structures for the biologist , 1998, Nature Structural Biology.

[23]  S. Kim,et al.  Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Chothia,et al.  Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Terry Gaasterland,et al.  Structural genomics: Bioinformatics in the driver's seat , 1998, Nature Biotechnology.

[26]  P E Bourne,et al.  Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. , 1998, Protein engineering.

[27]  S H Kim,et al.  Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Detlef D. Leipe,et al.  Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. , 1998, Nucleic acids research.

[29]  C. Chothia,et al.  Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Wang,et al.  Structural similarities between topoisomerases that cleave one or both DNA strands. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P Bork,et al.  Homology-based fold predictions for Mycoplasma genitalium proteins. , 1998, Journal of molecular biology.

[32]  A K Dunker,et al.  Protein disorder and the evolution of molecular recognition: theory, predictions and observations. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[33]  W. Chazin,et al.  Chemical shift homology in proteins , 1998, Journal of biomolecular NMR.

[34]  R. Altman,et al.  Recognizing protein binding sites using statistical descriptions of their 3D environments. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[35]  T C Terwilliger,et al.  Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 A resolution. , 1998, Structure.

[36]  J. Newman,et al.  Class‐directed structure determination: Foundation for a protein structure initiative , 1998, Protein science : a publication of the Protein Society.

[37]  L Shapiro,et al.  The Argonne Structural Genomics Workshop: Lamaze class for the birth of a new science. , 1998, Structure.

[38]  Sung-Hou Kim Shining a light on structural genomics , 1998, Nature Structural Biology.

[39]  James E. Bray,et al.  The CATH Database provides insights into protein structure/function relationships , 1999, Nucleic Acids Res..

[40]  Yunje Cho,et al.  Structure-based identification of a novel NTPase from Methanococcus jannaschii , 1999, Nature Structural Biology.

[41]  K. Volz A test case for structure‐based functional assignment: The 1.2 Å crystal structure of the yjgF gene product from Escherichia coli , 2008, Protein science : a publication of the Protein Society.

[42]  J. L. Smith,et al.  Crystal structure of Bacillus subtilis YabJ, a purine regulatory protein and member of the highly conserved YjgF family. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Boggon,et al.  Implication of tubby proteins as transcription factors by structure-based functional analysis. , 1999, Science.

[44]  T. Terwilliger,et al.  Rapid protein-folding assay using green fluorescent protein , 1999, Nature Biotechnology.

[45]  A. Sali,et al.  Structural genomics: beyond the Human Genome Project , 1999, Nature Genetics.

[46]  S. Brenner Errors in genome annotation. , 1999, Trends in genetics : TIG.

[47]  D Fischer,et al.  Rational structural genomics: affirmative action for ORFans and the growth in our structural knowledge. , 1999, Protein engineering.

[48]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[49]  Roberto Sánchez,et al.  ModBase: A database of comparative protein structure models , 1999, Bioinform..

[50]  K Wüthrich,et al.  NMR spectroscopy of large molecules and multimolecular assemblies in solution. , 1999, Current opinion in structural biology.

[51]  M Gerstein,et al.  Advances in structural genomics. , 1999, Current opinion in structural biology.

[52]  G. Montelione,et al.  A banner year for membranes , 1999, Nature Structural Biology.

[53]  Steven E. Brenner,et al.  The PRESAGE database for structural genomics , 1999, Nucleic Acids Res..

[54]  A. Godzik,et al.  Functional insights from structural predictions: Analysis of the Escherichia coli genome , 2008, Protein science : a publication of the Protein Society.

[55]  A. Valencia,et al.  Practical limits of function prediction , 2000, Proteins.

[56]  J. M. Sauder,et al.  Large‐scale comparison of protein sequence alignment algorithms with structure alignments , 2000, Proteins.

[57]  A. Sali,et al.  Protein structure modeling for structural genomics , 2000, Nature Structural Biology.

[58]  W. Baumeister,et al.  Macromolecular electron microscopy in the era of structural genomics. , 2000, Trends in biochemical sciences.

[59]  M Linial,et al.  Methodologies for target selection in structural genomics. , 2000, Progress in biophysics and molecular biology.

[60]  Jacquelyn S. Fetrow,et al.  Structural genomics and its importance for gene function analysis , 2000, Nature Biotechnology.

[61]  John C. Norvell,et al.  Structural genomics programs at the US National Institute of General Medical Sciences , 2000, Nature Structural Biology.

[62]  A. Williamson Creating a structural genomics consortium , 2000, Nature Structural Biology.

[63]  D Eisenberg,et al.  Selecting protein targets for structural genomics of Pyrobaculum aerophilum: validating automated fold assignment methods by using binary hypothesis testing. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  L. Shapiro,et al.  Finding function through structural genomics. , 2000, Current opinion in biotechnology.

[65]  P. Kraulis,et al.  Ansig for Windows: An interactive computer program for semiautomatic assignment of protein NMR spectra , 2000, Journal of biomolecular NMR.

[66]  Thomas Szyperski,et al.  Protein NMR spectroscopy in structural genomics , 2000, Nature Structural Biology.

[67]  W A Koppensteiner,et al.  Characterization of novel proteins based on known protein structures. , 2000, Journal of molecular biology.

[68]  Wellcome discusses structural genomics effort with industry...but data release remains an open question. , 2000, Nature.

[69]  E. Koonin,et al.  Functional implications from crystal structures of the conserved Bacillus subtilis protein Maf with and without dUTP. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. Edwards,et al.  Structure-based functional classification of hypothetical protein MTH538 from Methanobacterium thermoautotrophicum. , 2000, Journal of molecular biology.

[71]  Sarah Dry,et al.  Structural genomics in the biotechnology sector , 2000, Nature Structural Biology.

[72]  Malin M. Young,et al.  High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry , 2000, Proc. Natl. Acad. Sci. USA.

[73]  Manfred J. Sippl,et al.  The Role of Protein Structure in Genomics , 2000 .

[74]  J. Moult,et al.  Biological function made crystal clear - annotation of hypothetical proteins via structural genomics. , 2000, Current opinion in biotechnology.

[75]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[76]  Thomas C. Terwilliger,et al.  Structural genomics in North America , 2000, Nature Structural Biology.

[77]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[78]  J H Prestegard,et al.  Rapid determination of protein folds using residual dipolar couplings. , 2000, Journal of molecular biology.

[79]  Mark Gerstein,et al.  Structural proteomics of an archaeon , 2000, Nature Structural Biology.

[80]  Cheryl H. Arrowsmith,et al.  Protein production: feeding the crystallographers and NMR spectroscopists , 2000, Nature Structural Biology.

[81]  U Heinemann,et al.  An integrated approach to structural genomics. , 2000, Progress in biophysics and molecular biology.

[82]  H. Margalit,et al.  Evaluation of PSI‐BLAST alignment accuracy in comparison to structural alignments , 2000, Protein science : a publication of the Protein Society.

[83]  Udo Heinemann,et al.  Structural genomics in Europe: Slow start, strong finish? , 2000, Nature Structural Biology.

[84]  T L Blundell,et al.  Structural genomics: an overview. , 2000, Progress in biophysics and molecular biology.

[85]  W A Hendrickson,et al.  Synchrotron crystallography. , 2000, Trends in biochemical sciences.

[86]  R. Stevens,et al.  Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites. , 2000, Current opinion in structural biology.

[87]  P D Adams,et al.  Recent developments in software for the automation of crystallographic macromolecular structure determination. , 2000, Current opinion in structural biology.

[88]  J. Doudna Structural genomics of RNA , 2000, Nature Structural Biology.

[89]  Paul Smaglik Protein structure groups seek to draft common ground rules , 2000, Nature.

[90]  Annabel E. Todd,et al.  From structure to function: Approaches and limitations , 2000, Nature Structural Biology.

[91]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[92]  D. Butler Wellcome discusses structural genomics effort with industry… , 2000, Nature.

[93]  Thomas Earnest,et al.  Automation of X-ray crystallography , 2000, Nature Structural Biology.

[94]  T. Bhat,et al.  The Protein Data Bank and the challenge of structural genomics , 2000, Nature Structural Biology.

[95]  M. Gerstein Integrative database analysis in structural genomics , 2000, Nature Structural Biology.

[96]  A. Joachimiak,et al.  The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding , 2000, Protein science : a publication of the Protein Society.

[97]  Anastassis Perrakis,et al.  Current state of automated crystallographic data analysis , 2000, Nature Structural Biology.

[98]  Declan Butler …but data release remains an open question , 2000, Nature.

[99]  Y. Matsuo,et al.  Structural genomics projects in Japan. , 2000, Progress in biophysics and molecular biology.

[100]  Kurt Wüthrich,et al.  Protein recognition by NMR , 2000, Nature Structural Biology.

[101]  S. Brenner,et al.  Expectations from structural genomics , 2008, Protein science : a publication of the Protein Society.

[102]  Y. Matsuo,et al.  Automated search of natively folded protein fragments for high‐throughput structure determination in structural genomics , 2000, Protein science : a publication of the Protein Society.

[103]  Steven E. Brenner,et al.  Target selection for structural genomics , 2000, Nature Structural Biology.

[104]  E. Eisenstein,et al.  Crystal structure of Yeco from Haemophilus influenzae (HI0319) reveals a methyltransferase fold and a bound S‐adenosylhomocysteine , 2001, Proteins.

[105]  S. Teichmann,et al.  Domain combinations in archaeal, eubacterial and eukaryotic proteomes. , 2001, Journal of molecular biology.

[106]  J. M. Sauder,et al.  A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs. , 2001, Structure.

[107]  Chris Sander,et al.  Completeness in structural genomics , 2001, Nature Structural Biology.

[108]  C. Chothia,et al.  Determination of protein function, evolution and interactions by structural genomics. , 2001, Current opinion in structural biology.

[109]  Michael Lappe,et al.  A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3 , 2001, Nucleic Acids Res..

[110]  Sarah A. Teichmann,et al.  An insight into domain combinations , 2001, ISMB.

[111]  Thomas L. Madden,et al.  Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. , 2001, Nucleic acids research.

[112]  Mark Gerstein,et al.  SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics , 2001, Nucleic Acids Res..

[113]  Annabel E. Todd,et al.  Evolution of function in protein superfamilies, from a structural perspective. , 2001, Journal of molecular biology.

[114]  M. Grütter,et al.  Structural genomics: opportunities and challenges. , 2001, Current opinion in chemical biology.

[115]  D. Baker,et al.  Prospects for ab initio protein structural genomics. , 2001, Journal of molecular biology.

[116]  Olivier Lichtarge,et al.  Prediction and confirmation of a site critical for effector regulation of RGS domain activity , 2001, Nature Structural Biology.

[117]  I. Campbell,et al.  Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains. , 2001, Structure.

[118]  J M Thornton,et al.  From Genome to Function , 2001, Science.

[119]  James E. Bray,et al.  A rapid classification protocol for the CATH Domain Database to support structural genomics , 2001, Nucleic Acids Res..

[120]  Geoffrey J. Barton,et al.  3Dee: a database of protein structural domains , 2001, Bioinform..

[121]  Michael Y. Galperin Conserved ‘Hypothetical’ Proteins: New Hints and New Puzzles , 2001, Comparative and functional genomics.

[122]  J H Prestegard,et al.  Nuclear magnetic resonance in the era of structural genomics. , 2001, Biochemistry.

[123]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[124]  Michael Khodarkovsky,et al.  A new ERA? , 1997, Nature.