A relational perspective on spatial data mining

Remote sensing and mobile devices nowadays collect a huge amount of spatial data, which have to be analysed in order to discover interesting information about economic, social and scientific problems. However, the presence of a spatial dimension adds some problems to data mining tasks. The geometrical representation and relative positioning of spatial objects implicitly define spatial relationships, whose efficient computation requires a tight integration of the data mining system with the spatial DBMS. The interaction between spatially close objects causes different forms of autocorrelation, whose effect should be considered to improve the predictive accuracy of induced models and patterns. Units of analysis are typically composed of several spatial objects with different properties and their structure cannot be easily accommodated by classical double entry tabular data. In the paper, a way is shown to face these problems when a (multi-)relational data mining approach is considered for spatial data analysis. Moreover, the challenges that spatial data mining poses on current relational data mining methods are presented.

[1]  Jennifer Neville,et al.  Learning relational probability trees , 2003, KDD '03.

[2]  Michelangelo Ceci,et al.  Mining Model Trees from Spatial Data , 2005, PKDD.

[3]  Shashi Shekhar,et al.  Spatial Databases: A Tour , 2003 .

[4]  Ingolf Kühn,et al.  Incorporating spatial autocorrelation may invert observed patterns , 2006 .

[5]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[6]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[7]  J. LeSage,et al.  Spatial Dependence in Data Mining , 2001 .

[8]  Michelangelo Ceci,et al.  Mining and Filtering Multi-level Spatial Association Rules with ARES , 2005, ISMIS.

[9]  Luc De Raedt,et al.  Interactive theory revision , 1994 .

[10]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[11]  Pedro M. Domingos Toward knowledge-rich data mining , 2007, Data Mining and Knowledge Discovery.

[12]  John F. Roddick,et al.  An Updated Bibliography of Temporal, Spatial, and Spatio-temporal Data Mining Research , 2000, TSDM.

[13]  Amitabha Mukerjee,et al.  A Qualitative Model for Space , 1990, AAAI.

[14]  Jiawei Han,et al.  GeoMiner: a system prototype for spatial data mining , 1997, SIGMOD '97.

[15]  Jennifer Neville,et al.  Iterative Classification in Relational Data , 2000 .

[16]  Michelangelo Ceci,et al.  Spatial associative classification: propositional vs structural approach , 2006, Journal of Intelligent Information Systems.

[17]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[18]  Jennifer Neville,et al.  Linkage and Autocorrelation Cause Feature Selection Bias in Relational Learning , 2002, ICML.

[19]  Donato Malerba,et al.  Mining spatial association rules in census data , 2002 .

[20]  Michelangelo Ceci,et al.  Spatial Associative Classification at Different Levels of Granularity: A Probabilistic Approach , 2004, PKDD.

[21]  Shashi Shekhar,et al.  What’s Spatial About Spatial Data Mining: Three Case Studies , 2001 .

[22]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[23]  Donato Malerba,et al.  Discovering Associations between Spatial Objects: An ILP Application , 2001, ILP.

[24]  John F. Roddick,et al.  A bibliography of temporal, spatial and spatio-temporal data mining research , 1999, SKDD.

[25]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[26]  Jennifer Neville,et al.  Why collective inference improves relational classification , 2004, KDD.

[27]  Luc De Raedt,et al.  How to Upgrade Propositional Learners to First Order Logic: A Case Study , 2001, Machine Learning and Its Applications.

[28]  Yasushi Asami,et al.  An empirical evaluation of spatial regression models , 2006, Comput. Geosci..

[29]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[30]  Ralf Hartmut Güting Dr.rer.nat An introduction to spatial database systems , 2005, The VLDB Journal.

[31]  Michelangelo Ceci,et al.  A relational approach to probabilistic classification in a transductive setting , 2009, Eng. Appl. Artif. Intell..

[32]  Willi Klösgen,et al.  Spatial Subgroup Mining Integrated in an Object-Relational Spatial Database , 2002, PKDD.

[33]  Michèle Sebag,et al.  Scalability and efficiency in multi-relational data mining , 2003, SKDD.

[34]  Mark Gahegan,et al.  Geospatial Data Mining and Knowledge Discovery , 2000 .

[35]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[36]  Hans-Peter Kriegel,et al.  Knowledge Discovery in Spatial Databases , 1999, KI.

[37]  Anthony K. H. Tung,et al.  Spatial clustering methods in data mining : A survey , 2001 .

[38]  Jiawei Han,et al.  Spatial Data Mining: Progress and Challenges , 1996, Workshop on Research Issues on Data Mining and Knowledge Discovery.

[39]  A. U. Frank,et al.  Qualitative Spatial Reasoning , 2008, Encyclopedia of GIS.

[40]  Jiawei Han,et al.  Spatial clustering methods in data mining , 2001 .

[41]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[42]  Derek Thompson,et al.  Fundamentals of spatial information systems , 1992, A.P.I.C. series.

[43]  Vania Bogorny,et al.  Mining frequent geographic patterns with knowledge constraints , 2006, GIS '06.

[44]  Jennifer Neville,et al.  Collective Classification with Relational Dependency Networks , 2003 .