The Bessel Numbers and Bessel Matrices

In this paper, using exponential Riordan arrays, we investigate the Bessel numbers and Bessel matrices. By exploring links between the Bessel matrices, the Stirling matrices and the degenerate Stirling matrices, we show that the Bessel numbers are special case of the degenerate Stirling numbers, and derive explicit formulas for the Bessel numbers in terms of the Stirling numbers and binomial coefficients. Keywords Bessel number of the first kind; Bessel number of the second kind; exponential Riordan array; Stirling numbers; Bessel matrix.

[1]  Robin J. Chapman,et al.  Moments of Dyck paths , 1999, Discret. Math..

[2]  L. W. Shapiro,et al.  A Catalan triangle , 1976, Discret. Math..

[3]  Tianming Wang,et al.  Some identities related to reciprocal functions , 2003, Discret. Math..

[4]  J. L. Burchnall The Bessel Polynomials , 1951, Canadian Journal of Mathematics.

[5]  P. Barry On a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays , 2007 .

[6]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[7]  Seunghyun Seo,et al.  Combinatorial proofs of inverse relations and log-concavity for Bessel numbers , 2008, Eur. J. Comb..

[8]  Christian Krattenthaler,et al.  Combinatorial Proof of the Log-Concavity of the Sequence of Matching Numbers , 1996, J. Comb. Theory, Ser. A.

[9]  William Y. C. Chen,et al.  Matrix identities on weighted partial Motzkin paths , 2007, Eur. J. Comb..

[10]  Lou Shapiro Some Open Questions about Random Walks, Involutions, Limiting Distributions, and Generating Functions , 2001, Adv. Appl. Math..

[11]  Ji-Young Choi,et al.  On the Unimodality and Combinatorics of Bessel Numbers , 2003, Discret. Math..

[12]  L. C. Hsu,et al.  A Unified Approach to Generalized Stirling Numbers , 1998 .

[13]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[14]  Tianming Wang,et al.  Lah Matrix and Its Algebraic Properties , 2004, Ars Comb..

[15]  Leonard Carlitz,et al.  $q$-Bernoulli and Eulerian numbers , 1954 .

[16]  Gi-Sang Cheon,et al.  Stirling matrix via Pascal matrix , 2001 .

[17]  Louis W. Shapiro,et al.  Bijections and the Riordan group , 2003, Theor. Comput. Sci..