A machine learning pipeline for supporting differentiation of glioblastomas from single brain metastases
暂无分享,去创建一个
Margarida Julià-Sapé | Carles Arús | Alfredo Vellido | Sandra Ortega-Martorell | Victor Mocioiu | Urspeter Knecht | Nuno Miguel Pedrosa de Barros | Johannes Slotboom | J. Slotboom | S. Ortega-Martorell | A. Vellido | M. Julià-Sapé | C. Arús | V. Mocioiu | N. Barros | Urspeter Knecht
[1] W. Youden,et al. Index for rating diagnostic tests , 1950, Cancer.
[2] F. Howe,et al. Differentiation of metastases from high‐grade gliomas using short echo time 1H spectroscopy , 2004, Journal of magnetic resonance imaging : JMRI.
[3] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[4] Franziska Hirschhaeuser,et al. Lactate: a metabolic key player in cancer. , 2011, Cancer research.
[5] W. Hamel,et al. Pattern of Recurrence following Local Chemotherapy with Biodegradable Carmustine (BCNU) Implants in Patients with Glioblastoma , 2004, Journal of Neuro-Oncology.
[6] C Arús,et al. Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single‐voxel 1H MRS , 2012, NMR in biomedicine.
[7] Paulo J. G. Lisboa,et al. Machine learning in cancer research: implications for personalised medicine , 2008, ESANN.
[8] T. Scheenen,et al. Quantitative short echo time 1H MRSI of the peripheral edematous region of human brain tumors in the differentiation between glioblastoma, metastasis, and meningioma , 2012, Journal of magnetic resonance imaging : JMRI.
[9] Philippe Lambin,et al. A pathology-based substrate for target definition in radiosurgery of brain metastases. , 2006, International journal of radiation oncology, biology, physics.
[10] N. Otsu. A threshold selection method from gray level histograms , 1979 .
[11] Paulo J. G. Lisboa,et al. A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data , 2013, PloS one.
[12] H. Sebastian Seung,et al. Algorithms for Non-negative Matrix Factorization , 2000, NIPS.