Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis.

Revved-up rust! Light-induced water splitting over iron oxide (hematite) has been achieved by using a particle-assisted deposition technique and IrO2-based surface catalysis. Photocurrents in excess of 3 mA cm-2 were obtained at +1.23 V versus the reversible hydrogen electrode under AM 1.5 G 100 mW cm-2 simulated sunlight. These photocurrents are unmatched by any other oxide-based photoanode. FTO=fluorine-doped tin oxide. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[1]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[2]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[3]  Jianwei Sun,et al.  Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes. , 2009, Journal of the American Chemical Society.

[4]  A. J. Bosman,et al.  Small-polaron versus band conduction in some transition-metal oxides , 1970 .

[5]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[6]  M. Grätzel,et al.  Oxygen Evolution from Water via Redox Catalysis , 1978 .

[7]  Jun-Ho Yum,et al.  Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting , 2010 .

[8]  P. Biswas,et al.  Aerosol-Chemical Vapor Deposition Method For Synthesis of Nanostructured Metal Oxide Thin Films With Controlled Morphology , 2010 .

[9]  Krishnan Rajeshwar,et al.  Hydrogen generation at irradiated oxide semiconductor–solution interfaces , 2007 .

[10]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[11]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[12]  M. Grätzel,et al.  Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .

[13]  J. Jokiniemi,et al.  Deposition of nanostructured titania films by particle-assisted MOCVD , 2005 .

[14]  R. Murray,et al.  Electrogenerated IrO(x) nanoparticles as dissolved redox catalysts for water oxidation. , 2009, Journal of the American Chemical Society.

[15]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[16]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[17]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[18]  Kyoung-Shin Choi,et al.  Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production , 2009, Proceedings of the National Academy of Sciences.

[19]  M. Grätzel,et al.  Sauerstoffentwicklung aus Wasser durch Redoxkatalyse , 1978 .

[20]  R. Murray,et al.  Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrOx Nanoparticle Film , 2009 .

[21]  John B. Goodenough,et al.  Electrochemistry and photoelectrochemistry of iron(III) oxide , 1983 .

[22]  Michael Grätzel,et al.  Colloidal Redox Catalysts for Evolution of Oxygen and for Light‐Induced Evolution of Hydrogen from Water , 1979 .

[23]  Jan Augustynski,et al.  Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films , 2001 .

[24]  Qiushi Yin,et al.  A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals , 2010, Science.

[25]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[26]  D. Gamelin,et al.  Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. , 2010, Journal of the American Chemical Society.

[27]  E. McFarland,et al.  Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. , 2009, Chemical communications.

[28]  P. Biswas,et al.  Nanostructured TiO2 Films with Controlled Morphology Synthesized in a Single Step Process: Performance of Dye-Sensitized Solar Cells and Photo Watersplitting , 2008 .

[29]  M. Grätzel,et al.  Kolloidale Redoxkatalysatoren für die Sauerstoffentwicklung und die lichtinduzierte Wasserstoffentwicklung aus Wasser , 1979 .