Coupling of general Lagrangian systems

This work is devoted to the coupling of two fluid models, such a s two Euler systems in Lagrangian coordinates, at a fixed interface. We define coupling conditi ons which can be expressed in terms of continuity of some well chosen variables and then solve the coupled Riemann problem. In the present setting where the interface is characteristic, a particula r choice of dependent variables which are transmitted ensures the overall conservativity.

[1]  Paris Vi,et al.  Lagrangian systems of conservation laws Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition , 2001 .

[2]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[3]  P. LeFloch,et al.  Diffusive–dispersive travelling waves and kinetic relations V. Singular diffusion and nonlinear dispersion , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  Michael Shearer,et al.  Undercompressive Shocks for a System of Hyperbolic Conservation Laws with Cubic Nonlinearity , 1999 .

[5]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[6]  Mamoru Ishii,et al.  Two-fluid model and hydrodynamic constitutive relations , 1984 .

[7]  Philippe G. LeFloch,et al.  Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .

[8]  Bruno Després,et al.  Lagrangian systems of conservation laws , 2001, Numerische Mathematik.

[9]  P. Raviart,et al.  The interface coupling of the gas dynamics equations , 2008 .

[10]  J. E. Dunn,et al.  Institute for Mathematics and Its Applicatiotrs , 2022 .

[11]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[12]  Randolph G. Smith,et al.  The Riemann problem in gas dynamics , 1976 .

[13]  Hervé Guillard,et al.  A Darcy law for the drift velocity in a two-phase flow model , 2007, J. Comput. Phys..

[14]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .

[15]  C. Chalons,et al.  High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .

[16]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[17]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[18]  Annalisa Ambroso,et al.  COUPLING OF MULTIPHASE FLOW MODELS , 2005 .

[19]  Christophe Chalons,et al.  Transport-equilibrium schemes for computing nonclassical shocks , 2006 .

[20]  T. Gallouët,et al.  Numerical modeling of two-phase flows using the two-fluid two-pressure approach , 2004 .

[21]  Olivier Grégoire,et al.  Derivation of a well-posed and multidimensional drift-flux model for boiling flows , 2005 .

[22]  H. Bruce Stewart,et al.  Two-phase flow: Models and methods , 1984 .

[23]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[24]  Christophe Chalons,et al.  Relaxation approximation of the Euler equations , 2008 .

[25]  C. Rohde,et al.  Computation of dynamical phase transitions in solids , 2006 .

[26]  B. Hayes,et al.  Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .

[27]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[28]  Thomas Y. Hou,et al.  A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .

[29]  Wen-An Yong,et al.  Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .

[30]  Benjamin Boutin,et al.  Convergent and conservative schemes for nonclassical solutions based on kinetic relations , 2007, 0712.3766.

[31]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[32]  M. Slemrod A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase , 1989 .

[33]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .

[34]  P. Raviart,et al.  A Relaxation Method for the Coupling of Systems of Conservation Laws , 2008 .

[35]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[36]  C. Rohde,et al.  THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .

[37]  E. Isaacson,et al.  Nonlinear resonance in systems of conservation laws , 1992 .

[38]  Haitao Fan,et al.  The Riemann Problem for Systems of Conservation Laws of Mixed Type , 1993 .

[39]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[40]  N. Zuber,et al.  Average volumetric concentration in two-phase flow systems , 1965 .

[41]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[42]  Christophe Chalons Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..

[43]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[44]  M. Shearer,et al.  The Riemann problem for a system of conservation laws of mixed type with a cubic nonlinearity , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[45]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[46]  Philippe G. LeFloch Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme , 2007 .

[47]  M. Ishii,et al.  One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes , 2003 .

[48]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.

[49]  Philippe G. LeFloch,et al.  A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.

[50]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[51]  Thomas Y. Hou,et al.  Computational Methods for Propagating Phase Boundaries , 1996 .

[52]  B. Perthame,et al.  Some New Godunov and Relaxation Methods for Two-Phase Flow Problems , 2001 .

[53]  N. Zuber,et al.  Drag coefficient and relative velocity in bubbly, droplet or particulate flows , 1979 .

[54]  Frédéric Coquel,et al.  Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes , 2005, Numerische Mathematik.

[55]  Frédéric Coquel,et al.  The coupling of homogeneous models for two-phase flows , 2007 .

[56]  D. Serre Systems of conservation laws , 1999 .

[57]  Frédéric Coquel,et al.  Extension of Interface Coupling to General Lagrangian Systems , 2006 .

[58]  B. Hayes,et al.  Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .

[59]  Philippe G. LeFloch,et al.  High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..

[60]  Philippe G. LeFloch,et al.  Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[61]  Christophe Chalons Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .

[62]  Denis Serre,et al.  Conditions aux limites pour un système strictement hyperbolique fournies, par le schéma de Godunov , 1997 .

[63]  M. Gisclon,et al.  Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique , 1994 .

[64]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[65]  J. K. Knowles,et al.  Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .