Coupling of general Lagrangian systems
暂无分享,去创建一个
Frédéric Coquel | Christophe Chalons | Nicolas Seguin | Frédéric Lagoutière | Edwige Godlewski | Pierre-Arnaud Raviart | A. Ambroso | P. Raviart | C. Chalons | E. Godlewski | F. Coquel | N. Seguin | F. Lagoutière | A. Ambroso
[1] Paris Vi,et al. Lagrangian systems of conservation laws Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition , 2001 .
[2] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[3] P. LeFloch,et al. Diffusive–dispersive travelling waves and kinetic relations V. Singular diffusion and nonlinear dispersion , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[4] Michael Shearer,et al. Undercompressive Shocks for a System of Hyperbolic Conservation Laws with Cubic Nonlinearity , 1999 .
[5] P. Floch,et al. Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .
[6] Mamoru Ishii,et al. Two-fluid model and hydrodynamic constitutive relations , 1984 .
[7] Philippe G. LeFloch,et al. Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .
[8] Bruno Després,et al. Lagrangian systems of conservation laws , 2001, Numerische Mathematik.
[9] P. Raviart,et al. The interface coupling of the gas dynamics equations , 2008 .
[10] J. E. Dunn,et al. Institute for Mathematics and Its Applicatiotrs , 2022 .
[11] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[12] Randolph G. Smith,et al. The Riemann problem in gas dynamics , 1976 .
[13] Hervé Guillard,et al. A Darcy law for the drift velocity in a two-phase flow model , 2007, J. Comput. Phys..
[14] M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .
[15] C. Chalons,et al. High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .
[16] Rémi Abgrall,et al. Computations of compressible multifluids , 2001 .
[17] P. LeFloch,et al. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .
[18] Annalisa Ambroso,et al. COUPLING OF MULTIPHASE FLOW MODELS , 2005 .
[19] Christophe Chalons,et al. Transport-equilibrium schemes for computing nonclassical shocks , 2006 .
[20] T. Gallouët,et al. Numerical modeling of two-phase flows using the two-fluid two-pressure approach , 2004 .
[21] Olivier Grégoire,et al. Derivation of a well-posed and multidimensional drift-flux model for boiling flows , 2005 .
[22] H. Bruce Stewart,et al. Two-phase flow: Models and methods , 1984 .
[23] M. Ishii. Thermo-fluid dynamic theory of two-phase flow , 1975 .
[24] Christophe Chalons,et al. Relaxation approximation of the Euler equations , 2008 .
[25] C. Rohde,et al. Computation of dynamical phase transitions in solids , 2006 .
[26] B. Hayes,et al. Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .
[27] J. K. Knowles,et al. Kinetic relations and the propagation of phase boundaries in solids , 1991 .
[28] Thomas Y. Hou,et al. A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics , 1999 .
[29] Wen-An Yong,et al. Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .
[30] Benjamin Boutin,et al. Convergent and conservative schemes for nonclassical solutions based on kinetic relations , 2007, 0712.3766.
[31] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[32] M. Slemrod. A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase , 1989 .
[33] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .
[34] P. Raviart,et al. A Relaxation Method for the Coupling of Systems of Conservation Laws , 2008 .
[35] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[36] C. Rohde,et al. THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE: RIEMANN PROBLEMS AND GHOST FLUID TECHNIQUES , 2007 .
[37] E. Isaacson,et al. Nonlinear resonance in systems of conservation laws , 1992 .
[38] Haitao Fan,et al. The Riemann Problem for Systems of Conservation Laws of Mixed Type , 1993 .
[39] Frédéric Lagoutière,et al. Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .
[40] N. Zuber,et al. Average volumetric concentration in two-phase flow systems , 1965 .
[41] D. Drew,et al. Theory of Multicomponent Fluids , 1998 .
[42] Christophe Chalons. Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..
[43] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .
[44] M. Shearer,et al. The Riemann problem for a system of conservation laws of mixed type with a cubic nonlinearity , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[45] L. Truskinovskii,et al. Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .
[46] Philippe G. LeFloch. Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme , 2007 .
[47] M. Ishii,et al. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes , 2003 .
[48] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.
[49] Philippe G. LeFloch,et al. A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.
[50] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[51] Thomas Y. Hou,et al. Computational Methods for Propagating Phase Boundaries , 1996 .
[52] B. Perthame,et al. Some New Godunov and Relaxation Methods for Two-Phase Flow Problems , 2001 .
[53] N. Zuber,et al. Drag coefficient and relative velocity in bubbly, droplet or particulate flows , 1979 .
[54] Frédéric Coquel,et al. Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes , 2005, Numerische Mathematik.
[55] Frédéric Coquel,et al. The coupling of homogeneous models for two-phase flows , 2007 .
[56] D. Serre. Systems of conservation laws , 1999 .
[57] Frédéric Coquel,et al. Extension of Interface Coupling to General Lagrangian Systems , 2006 .
[58] B. Hayes,et al. Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .
[59] Philippe G. LeFloch,et al. High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..
[60] Philippe G. LeFloch,et al. Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[61] Christophe Chalons. Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .
[62] Denis Serre,et al. Conditions aux limites pour un système strictement hyperbolique fournies, par le schéma de Godunov , 1997 .
[63] M. Gisclon,et al. Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique , 1994 .
[64] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[65] J. K. Knowles,et al. Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids , 1991 .