Modeling and Performance Limits of a Large Aperture High-Resolution Wavefront Control System Based on a Liquid Crystal Spatial Light Modulator

The aberration introduced by the primary optical element of a lightweight large aperture telescope can be corrected with a diffractive optical element called the liquid crystal spatial light modulator. Such aberration is usually very large, which makes the design and modeling of such a system difficult. A method to analyze the system is introduced, and the performance limitation of the system is studied through extensive modeling. An experimental system is demonstrated to validate the analysis. The connection between the modeling data and the experimental data is given.

[1]  R C Sharp,et al.  Spatially resolved phase imaging of a programmable liquid-crystal grating. , 1996, Applied optics.

[2]  Roy Matic Blazed phase liquid crystal beam steering , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[3]  S. Serati,et al.  Beam combining using a phased array of phased arrays (PAPA) , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[5]  Richard A. John,et al.  Lateral field effect in twisted nematic cells , 1992, IBM J. Res. Dev..

[6]  Sergio R. Restaino,et al.  Novel spatial light modulators for active and adaptive optics , 2000, Photonics West - Optoelectronic Materials and Devices.

[7]  D. S. Hobbs,et al.  High-efficiency liquid-crystal optical phased-array beam steering. , 1996, Optics letters.

[8]  Raymond C. Dymale,et al.  Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter , 2005 .

[9]  Philip J. Bos,et al.  Performance evaluation of a liquid-crystal-on-silicon spatial light modulator , 2004 .

[10]  J. Goodman Introduction to Fourier optics , 1969 .

[11]  Sergio R. Restaino,et al.  Novel spatial light modulators for active and adaptive optics , 2000, Astronomical Telescopes and Instrumentation.

[12]  A. Lien A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays , 1997 .

[13]  Mark T. Gruneisen,et al.  Compensated telescope system with programmable diffractive optic , 2005 .

[14]  Edward A. Watson,et al.  Measurement and modeling of the angular dispersion in liquid crystal broadband beam steering devices , 1996 .

[15]  Bin Wang,et al.  Modeling and design of an optimized liquid-crystal optical phased array , 2005 .

[16]  Philip J. Bos,et al.  Liquid crystal on silicon (LCOS) wavefront corrector and beam steerer , 2003, SPIE Optics + Photonics.

[17]  J. Wyant,et al.  Basic Wavefront Aberration Theory for Optical Metrology , 1992 .

[18]  L. Blinov,et al.  Electro-optical effects in liquid crystals , 1975 .

[19]  Mark T. Gruneisen,et al.  Programmable diffractive optics for wide-dynamic-range wavefront control using liquid-crystal spatial light modulators , 2004 .

[20]  G. Love,et al.  Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. , 1997, Applied Optics.

[21]  D Psaltis,et al.  Liquid-crystal blazed-grating beam deflector. , 2000, Applied optics.

[22]  T. Dorschner,et al.  Applications look at the use of liquid crystal writable gratings for steering passive radiation , 1993 .

[23]  Mark T. Gruneisen,et al.  Wavelength-agile telescope system with diffractive wavefront control and acousto-optic spectral filter , 2004, SPIE Optics + Photonics.

[24]  M. Hunwardsen,et al.  Liquid crystal beam directors for airborne free-space optical communications , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).