SPITZER SPECTRAL LINE MAPPING OF PROTOSTELLAR OUTFLOWS. I. BASIC DATA AND OUTFLOW ENERGETICS

We report the results of spectroscopic mapping observations carried out toward protostellar outflows in the BHR71, L1157, L1448, NGC 2071, and VLA 1623 molecular regions using the Infrared Spectrograph (IRS) of the Spitzer Space Telescope. These observations, covering the 5.2–37 μm spectral region, provide detailed maps of the eight lowest pure rotational lines of molecular hydrogen and of the [S i] 25.25 μm and [Fe ii] 26.0 μm fine-structure lines. The molecular hydrogen lines, believed to account for a large fraction of the radiative cooling from warm molecular gas that has been heated by a non-dissociative shock, allow the energetics of the outflows to be elucidated. Within the regions mapped toward these five outflow sources, total H2 luminosities ranging from 0.02 to 0.75 L☉ were inferred for the sum of the eight lowest pure rotational transitions. By contrast, the much weaker [Fe ii] 26.0 μm fine-structure transition traces faster, dissociative shocks; here, only a small fraction of the fast shock luminosity emerges as line radiation that can be detected with Spitzer/IRS.

[1]  M. Harwit,et al.  SPITZER MAPPING OF MOLECULAR HYDROGEN PURE ROTATIONAL LINES IN NGC 1333: A DETAILED STUDY OF FEEDBACK IN STAR FORMATION , 2009, 0904.0603.

[2]  T. Ray,et al.  ATOMIC JETS FROM CLASS 0 SOURCES DETECTED BY SPITZER: THE CASE OF L1448-C , 2008, 0810.1651.

[3]  M. Perryman,et al.  A Giant Step: from Milli- to Micro-arcsecond Astrometry , 2008 .

[4]  T. Henning,et al.  ATCA and Spitzer Observations of the Binary Protostellar Systems CG 30 and BHR 71 , 2008, 0805.1533.

[5]  E. Bergin,et al.  Detection of Extended Hot Water in the Outflow from NGC 2071 , 2008, 0805.0573.

[6]  D. Neufeld,et al.  Mapping Warm Molecular Hydrogen with the Spitzer Infrared Array Camera (IRAC) , 2008, 0801.2141.

[7]  J. Tobin,et al.  A Flattened Protostellar Envelope in Absorption around L1157 , 2007, 0710.2314.

[8]  D. Hollenbach,et al.  Spitzer Spectral Line Mapping of Supernova Remnants. I. Basic Data and Principal Component Analysis , 2007, 0704.2179.

[9]  J. Richer,et al.  Warm SiO gas in molecular bullets associated with protostellar outflows , 2006, astro-ph/0610037.

[10]  E. Bergin,et al.  Gas-Phase CO2 Emission toward Cepheus A East: The Result of Shock Activity? , 2006, astro-ph/0609135.

[11]  E. Bergin,et al.  Spitzer Observations of HH 54 and HH 7-11: Mapping the H2 Ortho-to-Para Ratio in Shocked Molecular Gas , 2006, astro-ph/0606232.

[12]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC , 2006, astro-ph/0603547.

[13]  J. Rho,et al.  A Spitzer Space Telescope Infrared Survey of Supernova Remnants in the Inner Galaxy , 2005, astro-ph/0510630.

[14]  D. Roma,et al.  H2 active jets in the near IR as a probe of protostellar evolution , 2005, astro-ph/0512098.

[15]  P. Mauskopf,et al.  Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. I. Perseus , 2005, astro-ph/0602259.

[16]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[17]  Cambridge,et al.  L1157: Interaction of the molecular outflow with the class 0 environment , 2003, astro-ph/0312257.

[18]  B. Whitney,et al.  Jets and Herbig-Haro Objects in the ρ Ophiuchi Embedded Cluster , 2003 .

[19]  F. Gueth,et al.  Dust emission from young outflows: The case of L 1157 , 2003, astro-ph/0302477.

[20]  R. Bachiller,et al.  Chemically active outflow L 1157 , 2001 .

[21]  T. Bourke IRAS 11590–6452 in BHR 71: A Binary Protostellar System? , 2001, astro-ph/0105204.

[22]  Y. Taniguchi,et al.  Submillimeter CO Emission from Shock-heated Gas in the L1157 Outflow , 2001, astro-ph/0103036.

[23]  J. O'Linger,et al.  Giant Molecular Outflows Powered by Protostars in L1448 , 2000, astro-ph/0005317.

[24]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[25]  Michael D. Smith,et al.  Excitation and kinematics in H2 bow shocks: near-infrared observations of HH 99 and VLA 1623A (HH 313) , 1999 .

[26]  M. P. Gutiérrez,et al.  Shock Chemistry in the Young Bipolar Outflow L1157 , 1997 .

[27]  G. Garay,et al.  Discovery of a Highly Collimated Molecular Outflow in the Southern Bok Globule BHR 71 , 1997 .

[28]  M. Kun,et al.  Star Formation in the Cepheus Flare Molecular Clouds. I. Distance Determination and the Young Stellar Object Candidates , 1998 .

[29]  M. Kaufman,et al.  Far-Infrared Water Emissions from Magnetohydrodynamic Shock Waves , 1996 .

[30]  W. Dent,et al.  CO and shocked H_2 in the highly collimated outflow from VLA 1623 , 1995 .

[31]  A. R. Hyland,et al.  Studies of star formation in isolated small dark clouds - II. A southern ammonia survey , 1995 .

[32]  A. R. Hyland,et al.  Studies of star formation in isolated small dark clouds - I. A catalogue of southern BOK globules: optical and IRAS properties , 1995 .

[33]  J. Bally,et al.  The L1448 Molecular Jet , 1993 .

[34]  A. Fuente,et al.  High-velocity hot ammonia in bipolar outflows , 1993 .

[35]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[36]  B. Draine,et al.  Theory of Interstellar Shocks , 1993 .

[37]  T. Umemoto,et al.  Detection of SiO Emission in the L1157 Dark Cloud , 1992 .

[38]  A. Wootten,et al.  Cold DCO(+) cores and protostars in the warm Rho Ophiuchi cloud , 1990 .

[39]  P. Andre',et al.  X-Rays, Radio Emission, and Magnetism in Low-Mass Young Stars , 1988 .

[40]  J. Bally,et al.  The high-velocity molecular flows near young stellar objects , 1983 .

[41]  S. Strom,et al.  A 2-MICRON Map of the Ophiuchus Dark-Cloud Region , 1973 .

[42]  K. Schofield An evaluation of kinetic rate data for reactions of neutrals of atmospheric interest , 1967 .

[43]  D. J. L. Roy,et al.  Kinetics of the Reaction H+p‐H2=o‐H2+H , 1965 .