A NONSMOOTH OPTIMISATION APPROACH FOR THE STABILISATION OF TIME-DELAY SYSTEMS
暂无分享,去创建一个
Wim Michiels | Stefan Vandewalle | Joris Vanbiervliet | Koen Verheyden | S. Vandewalle | W. Michiels | K. Verheyden | J. Vanbiervliet
[1] D. D. Perlmutter,et al. Stability of time‐delay systems , 1972 .
[2] Jack K. Hale,et al. Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.
[3] R. Seydel. Practical bifurcation and stability analysis : from equilibrium to chaos , 1994 .
[4] Kolmanovskii,et al. Introduction to the Theory and Applications of Functional Differential Equations , 1999 .
[5] S. Niculescu. Delay Effects on Stability: A Robust Control Approach , 2001 .
[6] Dirk Roose,et al. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.
[7] Adrian S. Lewis,et al. Approximating Subdifferentials by Random Sampling of Gradients , 2002, Math. Oper. Res..
[8] K. ENGELBORGHS,et al. On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations , 2002, SIAM J. Numer. Anal..
[9] Wim Michiels,et al. Continuous pole placement for delay equations , 2002, Autom..
[10] A. Lewis,et al. A Nonsmooth, Nonconvex Optimization Approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers , 2003 .
[11] Ing. Tomáš Vyhlídal. Analysis and Synthesis of Time Delay System Spectrum , 2003 .
[12] Dirk Roose,et al. Equations with distributed delays: bifurcation analysis using computational tools for discrete delay equations , 2004 .
[13] Wim Michiels,et al. An eigenvalue based approach for the robust stabilization of linear time-delay systems , 2003 .
[14] Jean-Pierre Richard,et al. Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..
[15] D. Roose,et al. Numerical stability analysis of a large-scale delay system modeling a lateral semiconductor laser subject to optical feedback. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Dimitri Breda,et al. Computing the characteristic roots for delay differential equations , 2004 .
[17] Adrian S. Lewis,et al. A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..
[18] Dimitri Breda,et al. Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations , 2005, SIAM J. Sci. Comput..
[19] Dirk Roose,et al. Efficient numerical stability analysis of delay equations: a spectral method , 2005 .
[20] Adrian S. Lewis,et al. HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .
[21] Adrian S. Lewis,et al. Stabilization via Nonsmooth, Nonconvex Optimization , 2006, IEEE Transactions on Automatic Control.
[22] R. Vermiglio,et al. Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions , 2006 .
[23] Dirk Roose,et al. Efficient computation of characteristic roots of delay differential equations using LMS methods , 2008 .