Epitaxial zirconia thin films from aqueous precursors

Heteroepitaxial single crystal thin films of ZrO_2 (3–40 mol % Y_2O_3) have been deposited on single crystal, (100) oriented ZrO_2 (9.5 mol % Y_2O_3) substrates, using aqueous precursor solutions of zirconium acetate and yttrium nitrate. Film compositions crystallizing with the cubic structure had a lattice mismatch up to 1.59% [film composition: ZrO_2 (40 mol% Y_2O_3)]. Precursor films were deposited by spin coating, pyrolyzed to form the oxide, and heated at high temperatures to promote epitaxial growth. Cross-sectional TEM observations of thin films annealed at 600 °C (∼0.3 T _m) show the film to be composed of two distinct regions: an epitaxial layer, 0–6 nm thick, immediately adjacent to the substrate surface, and a porous nanocrystalline region (5–10 nm grain size) comprising the bulk of the film. At higher temperatures, the epitaxial layer grows by consuming the nanocrystalline material. Porosity accumulates at the growing interface, producing a dense epitaxial layer. Lattice mismatch is accommodated by a combination of misfit dislocations and epitaxial film strain. Calculations indicate that the energy required to accommodate the lattice mismatch can be a significant fraction of the total driving energy of grain boundary elimination, suggesting that growth may be completely arrested if the misfit between film and substrate exceeds a critical value.

[1]  F. Lange,et al.  Metastable Phase Selection and Partitioning in ZrO2—MgO Processed from Liquid Precursors , 1992 .

[2]  S. Komarneni,et al.  Alumina films on sapphire crystal show restricted epitaxial growth , 1990 .

[3]  Scott R. Wilson,et al.  Crystal structure of lithium niobium ethoxide (LiNb(OCH2CH3)6: a precursor for lithium niobate ceramics , 1990 .

[4]  Gerald B. Stringfellow,et al.  Fundamental issues in heteroepitaxy—A Department of Energy, Council on Materials Science Panel Report , 1990 .

[5]  J. Mantese,et al.  Metalorganic Deposition (MOD): A Nonvacuum, Spin-on, Liquid-Based, Thin Film Method , 1989 .

[6]  J. Mantese,et al.  Microstructure and superconducting properties of Y–Ba–Cu–O and Yb–Ba–Cu–O thin films formed by metalorganic deposition , 1989 .

[7]  Dae‐Joon Kim,et al.  Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite‐Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions , 1989 .

[8]  A. Heuer,et al.  High-temperature plastic deformation of Y2O3-stabilized ZrO2 single crystals. II: Electron microscopy studies of dislocation substructures , 1989 .

[9]  S. Terblanche Thermal-expansion coefficients of yttria-stabilized cubic zirconias , 1989 .

[10]  C. B. Carter,et al.  Solid‐Phase Epitaxy of Boehmite‐Derived α‐Alumina on Hematite Seed Crystals , 1989 .

[11]  G. Radnóczi,et al.  Solid phase epitaxy and doping of Si through Sb-enhanced recrystallization of polycrystalline Si , 1988 .

[12]  R. P. Ingel,et al.  Elastic Anisotropy in Zirconia Single Crystals , 1988 .

[13]  D. Partlow,et al.  Properties and microstructure of thin LiNbO_3 films prepared by a sol-gel process , 1987 .

[14]  A. Heuer,et al.  Phase Equilibration in ZrO2‐Y2O3 Alloys by Liquid‐Film Migration , 1986 .

[15]  M. Yoshimura,et al.  Subsolidus Phase Relations in the Pseudoternary System ZrO2‐YO1.5‐CrO1.5 in Air , 1984 .

[16]  S. Mader,et al.  The poly‐single crystalline silicon interface , 1984 .

[17]  B. Tsaur,et al.  Epitaxial alignment of polycrystalline Si films on (100) Si , 1980 .

[18]  H. G. Scott,et al.  Phase relationships in the yttria-rich part of the yttria-zirconia system , 1977 .

[19]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[20]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[21]  C. J. Harland,et al.  Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope , 1973 .

[22]  M. Cima,et al.  Epitaxial LiNbO3 thin films prepared by a sol-gel process , 1991 .

[23]  P. Durán,et al.  Subsolidus Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1983 .

[24]  R. Hink,et al.  Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1978 .