Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

Abstract Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1 0 21 cm − 3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic semiconductor NCs with LSPRs covering the entire spectral range, from the mid- to the NIR. We focus on copper chalcogenide NCs and impurity doped metal oxide NCs as the most investigated alternatives to noble metals. We shed light on the structural changes upon LSPR tuning in vacancy doped copper chalcogenide NCs and deliver a picture for the fundamentally different mechanism of LSPR modification of impurity doped metal oxide NCs. We review on the peculiar optical properties of plasmonic degenerately doped NCs by highlighting the variety of different optical measurements and optical modeling approaches. These findings are merged in an exhaustive section on new and exciting applications based on the special characteristics that plasmonic semiconductor NCs bring along.

[1]  Delia J. Milliron,et al.  Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals. , 2015, Journal of the American Chemical Society.

[2]  Zhongfan Liu,et al.  Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. , 2015, Journal of the American Chemical Society.

[3]  P. Jain,et al.  Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. , 2014, The journal of physical chemistry letters.

[4]  M. Swihart,et al.  Composition-Dependent Crystal Phase, Optical Properties, and Self-Assembly of Cu–Sn–S Colloidal Nanocrystals , 2015 .

[5]  Mark T Swihart,et al.  Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. , 2014, Chemical Society reviews.

[6]  Yu Chen,et al.  Facile synthesis of liposome/Cu2−xS-based nanocomposite for multimodal imaging and photothermal therapy , 2015, Science China Materials.

[7]  S. Dou,et al.  Photothermal Therapy: Ambient Aqueous Synthesis of Ultrasmall PEGylated Cu2−xSe Nanoparticles as a Multifunctional Theranostic Agent for Multimodal Imaging Guided Photothermal Therapy of Cancer (Adv. Mater. 40/2016) , 2016 .

[8]  Jiandong Wei,et al.  Synthesis of plasmonic Au–CuS hybrid nanocrystals for photothermal transduction and chemical transformations , 2016 .

[9]  Francesco Scotognella,et al.  Cation exchange synthesis and optoelectronic properties of type II CdTe–Cu2−xTe nano-heterostructures , 2014 .

[10]  B. Lotsch,et al.  Electronically coupled hybrid structures by graphene oxide directed self-assembly of Cu(2-x)S nanocrystals. , 2015, Nanoscale.

[11]  Yuanyuan Luo,et al.  Active and dynamic infrared switching of VO2 (M) nanoparticle film on ITO glass , 2016 .

[12]  R. D. Robinson,et al.  Selective Etching of Copper Sulfide Nanoparticles and Heterostructures through Sulfur Abstraction: Phase Transformations and Optical Properties , 2016 .

[13]  Yang Wang,et al.  Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. , 2016, Nature materials.

[14]  X. Qu,et al.  Using Plasmonic Copper Sulfide Nanocrystals as Smart Light-Driven Sterilants. , 2015, ACS nano.

[15]  Carsten Sönnichsen,et al.  Plasmons in metal nanostructures , 2001 .

[16]  D. Rossi,et al.  α-Chalcocite Nanoparticle Synthesis and Stability , 2011 .

[17]  Wei Zhang,et al.  Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity , 2011 .

[18]  Chun‐Sing Lee,et al.  Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications. , 2014, ACS applied materials & interfaces.

[19]  Jordi Arbiol,et al.  CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. , 2013, Journal of the American Chemical Society.

[20]  Evan L. Runnerstrom,et al.  Defect Engineering in Plasmonic Metal Oxide Nanocrystals. , 2016, Nano letters.

[21]  A. Soon,et al.  Unraveling the Intercalation Chemistry of Hexagonal Tungsten Bronze and Its Optical Responses , 2016 .

[22]  Hui Zhang,et al.  Ratiometry, Wavelength, and Intensity: Triple Signal Readout for Colorimetric Sensing of Mercury Ions by Plasmonic Cu2-xSe Nanoparticles , 2016 .

[23]  Jacek K. Stolarczyk,et al.  Light-induced cation exchange for copper sulfide based CO2 reduction. , 2015, Journal of the American Chemical Society.

[24]  Rujia Zou,et al.  Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells. , 2015, Dalton transactions.

[25]  A. Salleo,et al.  Modular synthetic design enables precise control of shape and doping in colloidal zinc oxide nanorods , 2015 .

[26]  Dong Liang,et al.  A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. , 2010, Journal of the American Chemical Society.

[27]  B. Draine,et al.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. , 2012, Optics express.

[28]  Daniel R. Gamelin,et al.  Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. , 2015, Accounts of chemical research.

[29]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[30]  James M. Mayer,et al.  Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents , 2012, Science.

[31]  P. H. Jefferson,et al.  Bandgap and effective mass of epitaxial cadmium oxide , 2008 .

[32]  Y. Hamanaka,et al.  Plasmonic enhancement of third-order nonlinear optical susceptibilities in self-doped Cu 2-x S nanoparticles , 2016 .

[33]  Feng Chen,et al.  Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. , 2014, Small.

[34]  Masayuki Kanehara,et al.  Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. , 2009, Journal of the American Chemical Society.

[35]  J. Hutchison,et al.  Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution. , 2016, ACS nano.

[36]  Chun Li,et al.  Copper-Based Nanomaterials for Cancer Imaging and Therapy. , 2016, Bioconjugate chemistry.

[37]  Dong-Hwang Chen,et al.  Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles , 2013, Nanoscale Research Letters.

[38]  L. Wan,et al.  Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu2S Nanowire Array Counter Electrodes. , 2015, Nano letters.

[39]  Viktoriia E. Babicheva,et al.  Transparent conducting oxides for electro-optical plasmonic modulators , 2015 .

[40]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[41]  D. Laughlin,et al.  The Cu-S (Copper-Sulfur) system , 1983 .

[42]  P. Jain,et al.  Doped nanocrystals as plasmonic probes of redox chemistry. , 2013, Angewandte Chemie.

[43]  Srirang Manohar,et al.  Discrete Dipole Approximation simulations of gold nanorod optical properties:choice of input parameters and comparison with experiment , 2009 .

[44]  F. Illas,et al.  Synthesis and Characterization of Blue Faceted Anatase Nanoparticles through Extensive Fluorine Lattice Doping , 2015 .

[45]  Bo Cui,et al.  Optical Properties and Liquid Sensitivity of Au-SiO2-Au Nanobelt Structure , 2016, Plasmonics.

[46]  E. Gerlach REVIEW ARTICLE: Carrier scattering and transport in semiconductors treated by the energy-loss method , 1986 .

[47]  Kourosh Kalantar-Zadeh,et al.  Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes. , 2016, ACS applied materials & interfaces.

[48]  Hyungtak Seo,et al.  Eye-readable gasochromic and optical hydrogen gas sensor based on CuS–Pd , 2015 .

[49]  D. Milliron,et al.  Electrochemically Induced Transformations of Vanadium Dioxide Nanocrystals. , 2016, Nano letters.

[50]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[51]  N. Pradhan,et al.  Fixed Aspect Ratio Rod‐to‐Rod Conversion and Localized Surface Plasmon Resonance in Semiconducting I–V–VI Nanorods , 2016, Advanced materials.

[52]  N. Pradhan,et al.  Semiconducting and plasmonic copper phosphide platelets. , 2013, Angewandte Chemie.

[53]  G. Xie,et al.  Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals. , 2016, ACS nano.

[54]  J. Elam,et al.  Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition , 2013 .

[55]  H. Matsui,et al.  Plasmonic-Field Interactions at Nanoparticle Interfaces for Infrared Thermal-Shielding Applications Based on Transparent Oxide Semiconductors. , 2016, ACS applied materials & interfaces.

[56]  L. Manna,et al.  New Materials for Tunable Plasmonic Colloidal Nanocrystals , 2014 .

[57]  A Paul Alivisatos,et al.  Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. , 2013, Physical review letters.

[58]  A. Cavalli,et al.  Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals , 2016, Journal of the American Chemical Society.

[59]  E. Furlani,et al.  Room-Temperature Synthesis of Covellite Nanoplatelets with Broadly Tunable Localized Surface Plasmon Resonance , 2015 .

[60]  D. Sarma,et al.  Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  Mathieu Kociak,et al.  Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. , 2009, Journal of the American Chemical Society.

[62]  Michael D. McGehee,et al.  Polymer-Nanoparticle Electrochromic Materials that Selectively Modulate Visible and Near-Infrared Light , 2016 .

[63]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[64]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[65]  L. Luo,et al.  A localized surface plasmon resonance and light confinement‐enhanced near‐infrared light photodetector , 2016 .

[66]  Plasmonics in heavily-doped semiconductor nanocrystals , 2013, 1306.1077.

[67]  Annibale Versari,et al.  Post-Synthesis Incorporation of ⁶⁴Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. , 2015, Journal of the American Chemical Society.

[68]  Lihua Xiao,et al.  Near-infrared radiation absorption properties of covellite (CuS) using first-principles calculations , 2016 .

[69]  D. Milliron,et al.  Transparent Conductive Oxide Nanocrystals Coated with Insulators by Atomic Layer Deposition , 2016 .

[70]  Aibin Huang,et al.  Solar-thermochromism of a hybrid film of VO2 nanoparticles and CoII–Br–TMP complexes , 2016 .

[71]  Stefan Fischbach,et al.  Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation , 2012 .

[72]  Barney M. Berlin,et al.  Size , 1989, Encyclopedia of Evolutionary Psychological Science.

[73]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[74]  Q. Kong,et al.  Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks. , 2015, The journal of physical chemistry letters.

[75]  Francesco Scotognella,et al.  Plasmonic Heavily-Doped Semiconductor Nanocrystal Dielectrics: Making Static Photonic Crystals Dynamic , 2015 .

[76]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[77]  E. Vasile,et al.  Current Transport Properties of CuS/Sn:In2O3 versus CuS/SnO2 Nanowires and Negative Differential Resistance in Quantum Dot Sensitized Solar Cells , 2016 .

[78]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[79]  Swapnadip De,et al.  Tunable Surface Plasmon Resonance in Sn-Doped Zn–Cd–O Alloyed Nanocrystals , 2015 .

[80]  Qunwei Shu,et al.  An easy hydrothermal synthesis of porous CuSySe1-y nanomaterials with broadly tunable near-infrared localized surface plasmon resonance , 2016 .

[81]  H. Matsui,et al.  Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays , 2015 .

[82]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[83]  M. Döblinger,et al.  Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances. , 2015, Journal of the American Chemical Society.

[84]  L. Manna,et al.  Self‐Assembled Dense Colloidal Cu2Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent , 2016 .

[85]  C. Huang,et al.  Efficient visible-light photocatalytic heterojunctions formed by coupling plasmonic Cu2−xSe and graphitic carbon nitride , 2015 .

[86]  C. Huang,et al.  Tuning of the near-infrared localized surface plasmon resonance of Cu2−xSe nanoparticles with lysozyme-induced selective aggregation , 2014 .

[87]  Longfei Tan,et al.  Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. , 2015, ACS nano.

[88]  K. Prabakar,et al.  Growth mechanisms and origin of localized surface plasmon resonance coupled exciton effects in Cu2−xS thin films , 2016 .

[89]  T. James,et al.  Solar-driven broad spectrum fungicides based on monodispersed Cu7S4 nanorods with strong near-infrared photothermal efficiency , 2016 .

[90]  W. Law,et al.  The non-aqueous synthesis of shape controllable Cu(2-x)S plasmonic nanostructures in a continuous-flow millifluidic chip for the generation of photo-induced heating. , 2016, Nanoscale.

[91]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[92]  Wei Lu,et al.  Copper sulfide nanoparticles for photothermal ablation of tumor cells. , 2010, Nanomedicine.

[93]  B. Tang,et al.  Core–Shell Composites Based on Multiwalled Carbon Nanotubes and Cesium Tungsten Bronze to Realize Charge Transport Balance for Photocatalytic Water Oxidation , 2016 .

[94]  Xuhui Sun,et al.  Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior , 2013 .

[95]  Alberto Salleo,et al.  Core/Shell Approach to Dopant Incorporation and Shape Control in Colloidal Zinc Oxide Nanorods , 2016 .

[96]  D. Milliron,et al.  Ordering in Polymer Micelle-Directed Assemblies of Colloidal Nanocrystals. , 2015, Nano letters.

[97]  N. Gu,et al.  Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. , 2015, ACS applied materials & interfaces.

[98]  S. Ghosh,et al.  Manipulating Electron Transfer in Hybrid ZnO–Au Nanostructures: Size of Gold Matters , 2016 .

[99]  Jianfeng Chen,et al.  Design of the Alkali-Metal-Doped WO3 as a Near-Infrared Shielding Material for Smart Window , 2014 .

[100]  Ju Hyun Park,et al.  Transformation from Cu2–xS Nanodisks to Cu2–xS@CuInS2 Heteronanodisks via Cation Exchange , 2016 .

[101]  D. Milliron,et al.  Influence of Shape on the Surface Plasmon Resonance of Tungsten Bronze Nanocrystals , 2014 .

[102]  D. Milliron,et al.  Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory , 2012 .

[103]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[104]  C. Flox,et al.  Morphology evolution of Cu(2-x)S nanoparticles: from spheres to dodecahedrons. , 2011, Chemical communications.

[105]  Ofir Friedman,et al.  Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: Role of the structure of the capping agent. , 2015, Journal of colloid and interface science.

[106]  M. Swihart,et al.  Plasmonic Semiconductor Nanocrystals as Chemical Sensors: Pb2+ Quantitation via Aggregation-Induced Plasmon Resonance Shift , 2014, Plasmonics.

[107]  Alina M. Schimpf,et al.  Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: size dependence and role of the hole quencher. , 2013, Journal of the American Chemical Society.

[108]  C. Klinke,et al.  Charge Redistribution and Extraction in Photocatalytically Synthesized Au–ZnO Nanohybrids , 2015 .

[109]  G. Wiederrecht,et al.  Stabilizing Cu2S for photovoltaics one atomic layer at a time. , 2013, ACS applied materials & interfaces.

[110]  C. Sangregorio,et al.  Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. , 2013, Journal of the American Chemical Society.

[111]  L. Deng,et al.  Controllable Transformation from Rhombohedral Cu1.8S Nanocrystals to Hexagonal CuS Clusters: Phase- and Composition-Dependent Plasmonic Properties , 2013 .

[112]  D. Gamelin,et al.  Photocharging ZnO Nanocrystals: Picosecond Hole Capture, Electron Accumulation, and Auger Recombination , 2012 .

[113]  F. He,et al.  Au@Cu7S4 yolk–shell nanoparticles as a 980 nm laser-driven photothermal agent with a heat conversion efficiency of 63% , 2015 .

[114]  Liang Song,et al.  Ultrasmall Cu2-x S Nanodots for Highly Efficient Photoacoustic Imaging-Guided Photothermal Therapy. , 2015, Small.

[115]  K. Prabakar,et al.  Stacked Cu1.8S nanoplatelets as counter electrode for quantum dot-sensitized solar cell , 2015 .

[116]  Hongwei Song,et al.  Observation of Considerable Upconversion Enhancement Induced by Cu2-xS Plasmon Nanoparticles. , 2016, ACS nano.

[117]  Juan Tang,et al.  Superfluorinated copper sulfide nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal ablation , 2016, Nano Research.

[118]  Xuehong Lu,et al.  Facile preparation of aqueous suspensions of WO3/sulfonated PEDOT hybrid nanoparticles for electrochromic applications. , 2016, Chemical communications.

[119]  U. Banin,et al.  Copper Sulfide Nanocrystal Level Structure and Electrochemical Functionality towards Sensing Applications. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[120]  Alina M. Schimpf,et al.  Photochemical electronic doping of colloidal CdSe nanocrystals. , 2013, Journal of the American Chemical Society.

[121]  T. Antosiewicz,et al.  Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low Carrier Density Nanocrystals , 2016, 1601.04822.

[122]  A. Boltasseva,et al.  Chapter 6 – Alternative Plasmonic Materials , 2014 .

[123]  Uri Banin,et al.  Hybrid Semiconductor–Metal Nanorods as Photocatalysts , 2016, Topics in Current Chemistry.

[124]  David Volbers,et al.  Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. , 2014, Nature materials.

[125]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[126]  J. Bang,et al.  New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability. , 2014, ACS applied materials & interfaces.

[127]  D. Milliron,et al.  Comparison of extra electrons in colloidal n-type Al(3+)-doped and photochemically reduced ZnO nanocrystals. , 2012, Chemical communications.

[128]  A. Tao,et al.  Digenite Nanosheets Synthesized by Thermolysis of Layered Copper-Alkanethiolate Frameworks. , 2016, Journal of the American Chemical Society.

[129]  Angshuman Nag,et al.  Doping Controls Plasmonics, Electrical Conductivity, and Carrier-Mediated Magnetic Coupling in Fe and Sn Codoped In2O3 Nanocrystals: Local Structure Is the Key , 2015 .

[130]  Hans A. Bechtel,et al.  Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals , 2016, Nature Communications.

[131]  Wing-Cheung Law,et al.  Cu2–xSe Nanocrystals with Localized Surface Plasmon Resonance as Sensitive Contrast Agents for In Vivo Photoacoustic Imaging: Demonstration of Sentinel Lymph Node Mapping , 2013, Advanced healthcare materials.

[132]  F. Teng,et al.  Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time , 2015 .

[133]  Hydrophilic Cu2-xSe/reduced graphene oxide nanocomposites with tunable plasmonic properties and their applications in cellular dark-field microscopic imaging. , 2014, Journal of materials chemistry. B.

[134]  M. Rajamathi,et al.  Synthesis and thermoelectric behaviour of copper telluride nanosheets , 2014 .

[135]  Ken-Tye Yong,et al.  New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. , 2016, Chemical reviews.

[136]  A. Alivisatos,et al.  Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures , 2015, Advanced materials.

[137]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[138]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[139]  Z. Abbas,et al.  Aqueous processable WO3−x nanocrystals with solution tunable localized surface plasmon resonance , 2016 .

[140]  M. Whangbo,et al.  Conductivity anisotropy and structural phase transition in Covellite CuS , 1993 .

[141]  H. Micklitz,et al.  Superconductor-insulator transition tuned by annealing in Bi-film on top of Co-clusters , 2013 .

[142]  Ilka Kriegel,et al.  Tuning the light absorption of Cu 1.97 S nanocrystals in supercrystal structures , 2011 .

[143]  Xiaodong Pi,et al.  Size‐Dependent Structures and Optical Absorption of Boron‐Hyperdoped Silicon Nanocrystals , 2016 .

[144]  D. Gamelin,et al.  Charge-controlled magnetism in colloidal doped semiconductor nanocrystals , 2010 .

[145]  L. Manna,et al.  Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals , 2014, Journal of the American Chemical Society.

[146]  U. Banin,et al.  Charge Transport in Cu2S Nanocrystals Arrays: Effects of Crystallite Size and Ligand Length , 2015 .

[147]  J. Parisi,et al.  Size and shape control of colloidal copper(I) sulfide nanorods. , 2012, ACS nano.

[148]  Jian Zhen Ou,et al.  Tunable Plasmon Resonances in Two‐Dimensional Molybdenum Oxide Nanoflakes , 2014, Advanced materials.

[149]  A. Meijerink,et al.  Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles , 2000 .

[150]  M. Knite,et al.  A straightforward and “green” solvothermal synthesis of Al doped zinc oxide plasmonic nanocrystals and piezoresistive elastomer nanocomposite , 2015 .

[151]  M. Stutzmann,et al.  Electronic Changes Induced by Surface Modification of Cu2–xS Nanocrystals , 2015 .

[152]  S. Khodier,et al.  Direct and indirect transitions in copper telluride thin films , 1991 .

[153]  Kai Li,et al.  One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals , 2010, Nanotechnology.

[154]  N. Kotov,et al.  Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. , 2013, ACS nano.

[155]  A. S. Pashinkin,et al.  p-T Phase Diagram of the Cu-Te System , 2005 .

[156]  Taejong Paik,et al.  Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. , 2014, Journal of the American Chemical Society.

[157]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[158]  Vinay Gupta,et al.  Surface plasmon resonance study on the optical sensing properties of tin oxide (SnO2) films to NH3 gas , 2016 .

[159]  John R. Lombardi,et al.  Theory of Surface-Enhanced Raman Scattering in Semiconductors , 2014 .

[160]  Raffaele Molinari,et al.  Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. , 2011, Journal of the American Chemical Society.

[161]  Niket Thakkar,et al.  Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. , 2014, ACS nano.

[162]  Jinlong Zhang,et al.  Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. , 2016, Chemical communications.

[163]  H. Weller,et al.  Spectroelectrochemical analysis of the electrochromism of antimony-doped nanoparticulate tin-dioxide electrodes , 2002 .

[164]  S. De,et al.  Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. , 2014, Nanoscale.

[165]  Francesco Scotognella,et al.  Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods , 2016, Nature Communications.

[166]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[167]  Jung-Hyun Kim,et al.  Electronic Properties of Cu2–xSe Nanocrystal Thin Films Treated with Short Ligand (S2–, SCN–, and Cl–) Solutions , 2016 .

[168]  D. Gamelin,et al.  Electron Confinement Effects in the EPR Spectra of Colloidal n-Type ZnO Quantum Dots , 2008 .

[169]  L. Deng,et al.  Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[170]  L. Bourgeois,et al.  Plasmonic Ge-doped ZnO nanocrystals. , 2015, Chemical communications.

[171]  B. Mulder Optical properties of crystals of cuprous sulphides (chalcosite, djurleite, Cu1.9S, and digenite) , 1972 .

[172]  Eugenio Calandrini,et al.  Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates. , 2015, Nano letters.

[173]  L. Manna,et al.  Forging Colloidal Nanostructures via Cation Exchange Reactions , 2016, Chemical reviews.

[174]  T. Altantzis,et al.  Shape Control of Colloidal Cu2–xS Polyhedral Nanocrystals by Tuning the Nucleation Rates , 2016, Chemistry of materials : a publication of the American Chemical Society.

[175]  A. Tao,et al.  Shape Focusing During the Anisotropic Growth of CuS Triangular Nanoprisms , 2015 .

[176]  Jochen Feldmann,et al.  Label-free biosensing based on single gold nanostars as plasmonic transducers. , 2010, ACS nano.

[177]  A. Boltasseva,et al.  Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). , 2013, Nano letters.

[178]  S. De,et al.  Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO(3-x) heterostructure nanorods by variation of the Ag size. , 2015, Nanoscale.

[179]  U. Kortshagen,et al.  Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. , 2015, Nano letters.

[180]  P. Poudeu,et al.  Topochemical Solid-State Reactivity: Redox-Induced Direct Structural Transformation from CuSe2 to CuInSe2 , 2015 .

[181]  Xiaohua Huang,et al.  Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy , 2010 .

[182]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[183]  L. Liz‐Marzán,et al.  Sensing using plasmonic nanostructures and nanoparticles , 2015, Nanotechnology.

[184]  D. Dorfs,et al.  Synthesis of Plasmonic Cu2-x Se@ZnS Core@Shell Nanoparticles. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[185]  Yu Huang,et al.  Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions. , 2015, Nano letters.

[186]  R. Schaller,et al.  Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. , 2012, Journal of the American Chemical Society.

[187]  Paul Mulvaney,et al.  Effect of the Solution Refractive Index on the Color of Gold Colloids , 1994 .

[188]  L. Manna,et al.  Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions , 2014, ACS nano.

[189]  C. Huang,et al.  Synergetic catalytic effect of Cu2-xSe nanoparticles and reduced graphene oxide coembedded in electrospun nanofibers for the reduction of a typical refractory organic compound. , 2015, ACS applied materials & interfaces.

[190]  P. Jain Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances. , 2014, The journal of physical chemistry letters.

[191]  H. Schmidt,et al.  Optically Induced Damping Of The Surface Plasmon Resonance In Gold Colloids , 1997, Quantum Electronics and Laser Science Conference.

[192]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[193]  Richard D. Schaller,et al.  Scaling the Artificial Polariton Bandgap at Infrared Frequencies Using Indium Tin Oxide Nanorod Arrays , 2016 .

[194]  J. Jasieniak,et al.  Non-injection synthesis of doped zinc oxide plasmonic nanocrystals. , 2014, ACS nano.

[195]  Ping Jin,et al.  Vanadium Dioxide Nanoparticle-based Thermochromic Smart Coating: High Luminous Transmittance, Excellent Solar Regulation Efficiency, and Near Room Temperature Phase Transition. , 2015, ACS applied materials & interfaces.

[196]  P. Guyot-Sionnest,et al.  HgS and HgS/CdS Colloidal Quantum Dots with Infrared Intraband Transitions and Emergence of a Surface Plasmon , 2016 .

[197]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[198]  André Anders,et al.  Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory , 2012 .

[199]  P. Nordlander,et al.  Theory of Quantum Plasmon Resonances in Doped Semiconductor Nanocrystals , 2014 .

[200]  Chunhui Huang,et al.  Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[201]  K. Adachi,et al.  Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles , 2015 .

[202]  Yang Tian,et al.  Synthesis of Ultrathin and Thickness-Controlled Cu2-xSe Nanosheets via Cation Exchange. , 2014, The journal of physical chemistry letters.

[203]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[204]  Ying Huang,et al.  Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties. , 2016, ACS applied materials & interfaces.

[205]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[206]  D. Milliron,et al.  Shape-Dependent Field Enhancement and Plasmon Resonance of Oxide Nanocrystals , 2015 .

[207]  R. Cava,et al.  Million-fold Increase of the Conductivity in TiO2 Rutile through 3% Niobium Incorporation , 2016 .

[208]  Zhaowei Liu,et al.  Plasmon-Enhanced Two-Photon Absorption in Photoluminescent Semiconductor Nanocrystals , 2016 .

[209]  Alexey Y. Koposov,et al.  Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene , 2013, Scientific Reports.

[210]  M. Navlani-García,et al.  Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2−xS nanowires decorated by Pd nanoparticles , 2017 .

[211]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[212]  Shaoqin Liu,et al.  Effective near-infrared absorbent: ammonium tungsten bronze nanocubes , 2015 .

[213]  P. Ding,et al.  Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts. , 2015, ACS applied materials & interfaces.

[214]  Y. Cho,et al.  Synthesis of Au−Cu2S Core−Shell Nanocrystals and Their Photocatalytic and Electrocatalytic Activity , 2010 .

[215]  James Hone,et al.  Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene , 2016, Nature Photonics.

[216]  D. Altamura,et al.  Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. , 2013, ACS nano.

[217]  F. Garin,et al.  Catalytic reactions of methylcyclohexane (MCH), on partially reduced tungsten oxide(s) , 2007 .

[218]  Evan L. Runnerstrom,et al.  Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. , 2015, Journal of the American Chemical Society.

[219]  K. Plass,et al.  Influence of Solvent Reducing Ability on Copper Sulfide Crystal Phase , 2013 .

[220]  E. Weiss,et al.  Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods. , 2014, Nano letters.

[221]  D. Milliron,et al.  The Interplay of Shape and Crystalline Anisotropies in Plasmonic Semiconductor Nanocrystals. , 2016, Nano letters.

[222]  M. Swihart,et al.  Controlling the Size, Shape, Phase, Band Gap, and Localized Surface Plasmon Resonance of Cu2–xS and CuxInyS Nanocrystals , 2015 .

[223]  M. Yudasaka,et al.  Characterizing the biocompatibility and tumor-imaging capability of Cu₂S nanocrystals in vivo. , 2015, Nanoscale.

[224]  Xuechen Chen,et al.  Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning. , 2016, ACS nano.

[225]  M. Swihart,et al.  Size-, Shape-, and Composition-Controlled Synthesis and Localized Surface Plasmon Resonance of Copper Tin Selenide Nanocrystals , 2015 .

[226]  Alina M. Schimpf,et al.  Redox Potentials of Colloidal n-Type ZnO Nanocrystals: Effects of Confinement, Electron Density, and Fermi-Level Pinning by Aldehyde Hydrogenation. , 2015, Journal of the American Chemical Society.

[227]  E. Miller,et al.  Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals. , 2013, Journal of the American Chemical Society.

[228]  Yang Wang,et al.  Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance. , 2015, Nano letters.

[229]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[230]  Evan L. Runnerstrom,et al.  Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals. , 2014, The journal of physical chemistry letters.

[231]  Rajender S. Varma,et al.  Cu and Cu‐Based Nanoparticles: Synthesis and Applications in Catalysis , 2016 .

[232]  Jie Liang,et al.  Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO₂ microspheres. , 2015, ACS applied materials & interfaces.

[233]  J. Sann,et al.  Growth of Cu2–xSe–CuPt and Cu1.1S–Pt Hybrid Nanoparticles , 2016 .

[234]  A. Boltasseva,et al.  Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off , 2015 .

[235]  F. Teng,et al.  Tuning the plasmonic resonance of Cu2−xS nanocrystals: effects of the crystal phase, morphology and surface ligands , 2016 .

[236]  Paul Mulvaney,et al.  Spectroelectrochemistry of colloidal silver , 1997 .

[237]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[238]  Rujia Zou,et al.  Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. , 2011, ACS nano.

[239]  Huiyuan Zhu,et al.  Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their application for heterogeneous catalysis , 2016, Frontiers of Chemical Science and Engineering.

[240]  Matthew G. Panthani,et al.  Copper selenide nanocrystals for photothermal therapy. , 2011, Nano letters.

[241]  Xian-Jin Yang,et al.  Nanoporous CuS with excellent photocatalytic property , 2015, Scientific Reports.

[242]  Dehong Chen,et al.  Enhanced electrochromic performance of WO3 nanowire networks grown directly on fluorine-doped tin oxide substrates , 2016 .

[243]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[244]  Baibiao Huang,et al.  Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances. , 2016, Journal of the American Chemical Society.

[245]  B. Mansour,et al.  Determination of the effective mass for highly degenerate copper selenide from reflectivity measurements , 1992 .

[246]  F. Teng,et al.  Synthesis of Cu2−xS nanocrystals induced by foreign metal ions: phase and morphology transformation and localized surface plasmon resonance , 2014 .

[247]  Sudipta Chakraborty,et al.  Industrial-Scale Synthesis of Intrinsically Radiolabeled 64CuS Nanoparticles for Use in Positron Emission Tomography (PET) Imaging of Cancer , 2016 .

[248]  X. Bai,et al.  Strong Coupling between ZnO Excitons and Localized Surface Plasmons of Silver Nanoparticles Studied by STEM-EELS. , 2015, Nano letters (Print).

[249]  N. Dai,et al.  Surface-dependent localized surface plasmon resonances in CuS nanodisks. , 2013, ACS applied materials & interfaces.

[250]  L. Deng,et al.  Thermal Annealing Effects of Plasmonic Cu1.8S Nanocrystal Films and Their Photovoltaic Properties , 2014 .

[251]  D. Primetzhofer,et al.  Tuning the Localized Surface Plasmon Resonance in Cu2–xSe Nanocrystals by Postsynthetic Ligand Exchange , 2014, ACS applied materials & interfaces.

[252]  A. Tao,et al.  Effects of Carrier Density and Shape on the Localized Surface Plasmon Resonances of Cu2–xS Nanodisks , 2012 .

[253]  T. Gordon,et al.  Synthesis of Hybrid Au-In2O3 Nanoparticles Exhibiting Dual Plasmonic Resonance , 2014 .

[254]  Dennis Nordlund,et al.  Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. , 2014, Journal of the American Chemical Society.

[255]  Longyan Chen,et al.  Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids , 2015, Journal of Nanobiotechnology.

[256]  Hsing-Yu Tuan,et al.  Designed Synthesis of Solid and Hollow Cu2–xTe Nanocrystals with Tunable Near-Infrared Localized Surface Plasmon Resonance , 2013 .

[257]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[258]  Francesco Scotognella,et al.  Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite , 2015, Beilstein journal of nanotechnology.

[259]  Yaping Du,et al.  High‐Quality Copper Sulfide Nanocrystals with Diverse Shapes and Their Catalysis for Electrochemical Reduction of H2O2 , 2015 .

[260]  D. Milliron,et al.  Dispersible Plasmonic Doped Metal Oxide Nanocrystal Sensors that Optically Track Redox Reactions in Aqueous Media with Single‐Electron Sensitivity , 2015 .

[261]  Lin-Wang Wang,et al.  Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod , 2011, Science.

[262]  Q. Akkerman,et al.  Solution-Processable Ultrathin Size- and Shape-Controlled Colloidal Cu2–xS Nanosheets , 2015 .

[263]  Richard D. Schaller,et al.  Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude , 2016, Nature Photonics.

[264]  A. Prieto,et al.  Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. , 2011, Journal of the American Chemical Society.

[265]  Q. Shao,et al.  Enhanced near-infrared absorption and photo-thermal generation in black iron doped indium tin oxide , 2016 .

[266]  D. Rossi,et al.  Synthesis of Monoclinic and Tetragonal Chalcocite Nanoparticles by Iron-Induced Stabilization , 2011 .

[267]  A Paul Alivisatos,et al.  Assembled monolayer nanorod heterojunctions. , 2011, ACS nano.

[268]  Zhigang Zhao,et al.  Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies , 2015, Nature Communications.

[269]  Juan Tang,et al.  Ultrahigh (19)F Loaded Cu1.75S Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging and Photothermal Therapy. , 2016, ACS nano.

[270]  G. Wiederrecht,et al.  Photoexcited Carrier Dynamics of Cu2S Thin Films. , 2014, The journal of physical chemistry letters.

[271]  Yadong Li,et al.  Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene , 2016, Nano Research.

[272]  C. Rao,et al.  Metallic ReO3 nanoparticles. , 2006, The journal of physical chemistry. B.

[273]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[274]  Nader Engheta,et al.  Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals. , 2014, ACS nano.

[275]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[276]  Meifang Zhu,et al.  In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[277]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[278]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[279]  Jeslin J. Wu,et al.  Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. , 2016, Chemical reviews.

[280]  C. Huang,et al.  Polydopamine-embedded Cu(2-x)Se nanoparticles as a sensitive biosensing platform through the coupling of nanometal surface energy transfer and photo-induced electron transfer. , 2015, The Analyst.

[281]  Chengbo Liu,et al.  A facile synthesis of versatile Cu2-xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. , 2015, Biomaterials.

[282]  J. Santhanalakshmi,et al.  Au–ZnO bullet-like heterodimer nanoparticles: synthesis and use for enhanced nonenzymatic electrochemical determination of glucose , 2014 .

[283]  Alessandro Martucci,et al.  Degenerately Doped Metal Oxide Nanocrystals as Plasmonic and Chemoresistive Gas Sensors. , 2016, ACS applied materials & interfaces.

[284]  B. Tang,et al.  IR-Driven Photocatalytic Water Splitting with WO2-NaxWO3 Hybrid Conductor Material. , 2015, Nano letters.

[285]  J. Morante,et al.  Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes. , 2013, Journal of the American Chemical Society.

[286]  G. Cerullo,et al.  Ultrafast Photodoping and Plasmon Dynamics in Fluorine-Indium Codoped Cadmium Oxide Nanocrystals for All-Optical Signal Manipulation at Optical Communication Wavelengths. , 2016, The journal of physical chemistry letters.

[287]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[288]  D. Gamelin,et al.  Electron transfer between colloidal ZnO nanocrystals. , 2011, Journal of the American Chemical Society.

[289]  P. Jain,et al.  Plasmons in Photocharged ZnO Nanocrystals Revealing the Nature of Charge Dynamics , 2013 .

[290]  Ying Dai,et al.  Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors , 2014, Scientific Reports.

[291]  C. Huang,et al.  H2S bubbles-assisted synthesis of hollow Cu2−xSeyS1−y/reduced graphene oxide nanocomposites with tunable compositions and localized surface plasmon resonance , 2015 .

[292]  T. Pellegrino,et al.  From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. , 2015, ACS nano.

[293]  T. Teranishi,et al.  Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling. , 2015, Faraday discussions.

[294]  B. Robinson,et al.  Room-temperature electron spin dynamics in free-standing ZnO quantum dots. , 2007, Physical review letters.

[295]  G. Lanzani,et al.  Plasmon dynamics in colloidal Cu₂-xSe nanocrystals. , 2011, Nano letters.

[296]  P. Biagioni,et al.  Ultrasensitive Characterization of Mechanical Oscillations and Plasmon Energy Shift in Gold Nanorods. , 2016, ACS nano.

[297]  Hui Zhang,et al.  Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances. , 2013, ACS nano.

[298]  Pearl L. Saldanha,et al.  Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles , 2014 .

[299]  A. Prieto,et al.  Enhanced Conductivity in CZTS/Cu(2-x)Se Nanocrystal Thin Films: Growth of a Conductive Shell. , 2016, ACS applied materials & interfaces.

[300]  Luis M. Liz-Marzán,et al.  Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method , 2008 .

[301]  D. Milliron,et al.  Low Temperature Synthesis and Surface Plasmon Resonance of Colloidal Lanthanum Hexaboride (LaB6) Nanocrystals , 2015 .

[302]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[303]  A. Riedinger,et al.  Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment , 2015, Chemistry of materials : a publication of the American Chemical Society.

[304]  T. Paik,et al.  Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. , 2014, Journal of the American Chemical Society.

[305]  C. Granqvist,et al.  Optical properties of transparent and heat‐reflecting indium tin oxide films: The role of ionized impurity scattering , 1984 .

[306]  Michele Manca,et al.  Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes , 2016 .

[307]  Tuning the LSPR in copper chalcogenide nanoparticles by cation intercalation, cation exchange and metal growth. , 2015, Nanoscale.

[308]  Stefan A. Maier,et al.  Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies , 2014 .

[309]  Horst Weller,et al.  Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization , 1988 .

[310]  Yang Wang,et al.  Disentangling Photochromism and Electrochromism by Blocking Hole Transfer at the Electrolyte Interface , 2016 .

[311]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[312]  Philippe Guyot-Sionnest,et al.  n-type colloidal semiconductor nanocrystals , 2000, Nature.

[313]  Haeshin Lee,et al.  Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[314]  Lihong V. Wang,et al.  Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain , 2003, Nature Biotechnology.

[315]  M. Swihart,et al.  Cu-Deficient Plasmonic Cu2–xS Nanoplate Electrocatalysts for Oxygen Reduction , 2015 .

[316]  Weizhen Yu,et al.  Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation. , 2016, Small.

[317]  A Paul Alivisatos,et al.  Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. , 2008, Nano letters.

[318]  M. Liu,et al.  Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics. , 2016, Nanoscale.

[319]  M. Swihart,et al.  Cu2–xS1–ySey Alloy Nanocrystals with Broadly Tunable Near-Infrared Localized Surface Plasmon Resonance , 2013 .

[320]  Roberto Simonutti,et al.  Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption , 2013 .

[321]  Xiaopeng Zheng,et al.  Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging. , 2014, Small.

[322]  L. Ceseracciu,et al.  Fully Solution‐Processed Conductive Films Based on Colloidal Copper Selenide Nanosheets for Flexible Electronics , 2016 .

[323]  Ping Jin,et al.  Composite Film of Vanadium Dioxide Nanoparticles and Ionic Liquid-Nickel-Chlorine Complexes with Excellent Visible Thermochromic Performance. , 2016, ACS applied materials & interfaces.

[324]  P. Schuck,et al.  Surface Enhanced Raman Spectroscopy of Organic Molecules on Magnetite (Fe3O4) Nanoparticles. , 2015, The journal of physical chemistry letters.

[325]  R. D. Robinson,et al.  Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition. , 2014, ACS applied materials & interfaces.

[326]  Margaret K. A. Koker,et al.  Solid-solid phase transformations induced through cation exchange and strain in 2D heterostructured copper sulfide nanocrystals. , 2014, Nano letters.

[327]  Yang Wang,et al.  Switchable Materials for Smart Windows. , 2016, Annual review of chemical and biomolecular engineering.

[328]  Yi Ding,et al.  Ligand-Free, Colloidal, and Plasmonic Silicon Nanocrystals Heavily Doped with Boron , 2016 .

[329]  C. Huang,et al.  Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence. , 2014, Nanoscale.

[330]  Guang Yang,et al.  Synergistic Effect Induced High Photothermal Performance of Au Nanorod@Cu7S4 Yolk–Shell Nanooctahedron Particles , 2016 .

[331]  Rujia Zou,et al.  Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. , 2013, Journal of the American Chemical Society.

[332]  Synthetic Strategies for Semiconductor Nanocrystals Expressing Localized Surface Plasmon Resonance. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[333]  H. Kurata,et al.  Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their Plasmonic Properties via Phase Conversion. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[334]  K. Plass,et al.  Stabilization of plasmon resonance in Cu2-xS semiconductor nanoparticles. , 2016, Chemical communications.

[335]  G. Cerullo,et al.  Real-time optical mapping of the dynamics of nonthermal electrons in thin gold films , 2012 .

[336]  Younan Xia,et al.  Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. , 2008, Journal of materials chemistry.

[337]  Xiaomin Liu,et al.  Interconnected porous hollow CuS microspheres derived from metal-organic frameworks for efficient adsorption and electrochemical biosensing , 2015 .

[338]  D. Laughlin,et al.  The Cu−Se (Copper-Selenium) system , 1981 .

[339]  G. Lanzani,et al.  Ultrafast Optical Mapping of Nonlinear Plasmon Dynamics in Cu2–xSe Nanoparticles , 2013 .

[340]  Andrea R Tao,et al.  Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. , 2014, Nano letters.

[341]  Francesco Scotognella,et al.  Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. , 2015, Small.

[342]  H. Atwater,et al.  Electrochemical Tuning of the Dielectric Function of Au Nanoparticles , 2015 .

[343]  Evan L. Runnerstrom,et al.  Plasmonic Electrochromism of Metal Oxide Nanocrystals , 2015 .

[344]  Yixin Zhao,et al.  Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials , 2012 .

[345]  Joshua J. Goings,et al.  Theoretical Characterization of Conduction-Band Electrons in Photodoped and Aluminum-Doped Zinc Oxide (AZO) Quantum Dots , 2014 .

[346]  Matthew Boyles,et al.  The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types , 2015, Journal of Nanobiotechnology.

[347]  Andrey L. Rogach,et al.  Single gold nanostars enhance Raman scattering , 2009 .

[348]  Jin Chang,et al.  Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. , 2016, ACS nano.

[349]  T. Antosiewicz,et al.  Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres. , 2015, The journal of physical chemistry letters.

[350]  Stefan Fischbach,et al.  Delayed photoelectron transfer in Pt-decorated CdS nanorods under hydrogen generation conditions. , 2012, Small.

[351]  A. S. Davis,et al.  Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. , 2012, The journal of physical chemistry. A.

[352]  D. Gamelin,et al.  Stable photogenerated carriers in magnetic semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[353]  Kevin R. Kittilstved,et al.  Electron trapping on Fe(3+) sites in photodoped ZnO colloidal nanocrystals. , 2016, Chemical communications.

[354]  E. Aydil,et al.  Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement. , 2015, Nano letters.

[355]  Junle Qu,et al.  Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[356]  Yuanyi Zheng,et al.  Enabling Prussian Blue with Tunable Localized Surface Plasmon Resonances: Simultaneously Enhanced Dual-Mode Imaging and Tumor Photothermal Therapy. , 2016, ACS nano.

[357]  Wing-Cheung Law,et al.  Au-Cu(2-x)Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. , 2013, Nano letters.

[358]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .

[359]  Hua Zhang,et al.  Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation. , 2014, Angewandte Chemie.

[360]  Gebo Pan,et al.  Facile Microwave-Assisted Synthesis of Klockmannite CuSe Nanosheets and Their Exceptional Electrical Properties , 2014, Scientific Reports.

[361]  L. Manna,et al.  Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals , 2015, Journal of the American Chemical Society.

[362]  Rujia Zou,et al.  Nanocomposites: A Low‐Toxic Multifunctional Nanoplatform Based on Cu9S5@mSiO2 Core‐Shell Nanocomposites: Combining Photothermal‐ and Chemotherapies with Infrared Thermal Imaging for Cancer Treatment (Adv. Funct. Mater. 35/2013) , 2013 .

[363]  Liberato Manna,et al.  Understanding the Plasmon Resonance in Ensembles of Degenerately Doped Semiconductor Nanocrystals , 2012 .

[364]  P. Radovanovic,et al.  Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure , 2011 .

[365]  S. Rosenthal,et al.  Plasmonic Cu(x)In(y)S2 quantum dots make better photovoltaics than their nonplasmonic counterparts. , 2014, Nano letters.

[366]  Jing Liu,et al.  Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release , 2015, Nano Research.

[367]  M. Duchamp,et al.  Single‐Crystalline W‐Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature , 2016 .

[368]  A. Cartwright,et al.  Size‐Controlled Synthesis of Cu2‐xE (E = S, Se) Nanocrystals with Strong Tunable Near‐Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films , 2013 .

[369]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[370]  R. Chang,et al.  Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals. , 2016, ACS nano.

[371]  S. Derom,et al.  Mie Plasmons: Modes Volumes, Quality Factors, and Coupling Strengths (Purcell Factor) to a Dipolar Emitter , 2011, 1112.2814.

[372]  A. Kuznetsov Effect of Proximity in Arrays of Plasmonic Nanoantennas on Hot Spots Density: Degenerate Semiconductors vs. Conventional Metals , 2016, Plasmonics.

[373]  Horst Weller,et al.  Photochemistry and Radiation Chemistry of Colloidal Semiconductors. , 1986 .

[374]  Delia J. Milliron,et al.  Nanostructured Electrochromic Smart Windows: Traditional Materials and NIR‐Selective Plasmonic Nanocrystals , 2014 .

[375]  A. Cavalli,et al.  Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions , 2015, Chemistry of materials : a publication of the American Chemical Society.

[376]  Rijun Gui,et al.  CuS nanocrystal@microgel nanocomposites for light-regulated release of dual-drugs and chemo-photothermal synergistic therapy in vitro , 2016 .

[377]  Mengya Liu,et al.  Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. , 2014, Journal of the American Chemical Society.

[378]  Jun‐Jie Zhu,et al.  Plasmonic Cu2-xS Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. , 2009 .

[379]  M. Shim,et al.  Charge-Tunable Optical Properties in Colloidal Semiconductor Nanocrystals , 2001 .

[380]  P. Jain,et al.  Plasmonics with Doped Quantum Dots , 2012 .

[381]  P. Kamat,et al.  Modulation of Cu(2-x)S Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer. , 2016, ACS nano.

[382]  F. Garin,et al.  Catalytic reactions of methylcyclohexane (MCH) on partially reduced MoO3 , 2004 .