ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS

[1]  N. Braverman,et al.  Peroxisome biogenesis disorders , 2016, Translational science of rare diseases.

[2]  T. Ludwig,et al.  MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. , 2014, Cell reports.

[3]  A. Ernst,et al.  Cargo recognition and trafficking in selective autophagy , 2014, Nature Cell Biology.

[4]  T. Finkel,et al.  Cellular mechanisms and physiological consequences of redox-dependent signalling , 2014, Nature Reviews Molecular Cell Biology.

[5]  D. Green,et al.  To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate , 2014, Cell.

[6]  S. Subramani,et al.  Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy , 2014, The Journal of cell biology.

[7]  Andrew D. Rutenberg,et al.  PEX5 and Ubiquitin Dynamics on Mammalian Peroxisome Membranes , 2014, PLoS Comput. Biol..

[8]  Jennifer J. Smith,et al.  Peroxisomes take shape , 2013, Nature Reviews Molecular Cell Biology.

[9]  C. Brees,et al.  PEX5, the Shuttling Import Receptor for Peroxisomal Matrix Proteins, Is a Redox‐Sensitive Protein , 2013, Traffic : the International Journal of Intracellular Transport.

[10]  S. Akira,et al.  Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin , 2013, The Journal of cell biology.

[11]  D. Benjamin,et al.  TSC on the peroxisome controls mTORC1 , 2013, Nature Cell Biology.

[12]  Soumitra Polley,et al.  Redox-regulated Cargo Binding and Release by the Peroxisomal Targeting Signal Receptor, Pex5* , 2013, The Journal of Biological Chemistry.

[13]  C. Walker,et al.  Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2–mediated suppression of mTORC1 , 2013, Proceedings of the National Academy of Sciences.

[14]  G. Dorn,et al.  PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria , 2013, Science.

[15]  J. Lippincott-Schwartz,et al.  NBR1 acts as an autophagy receptor for peroxisomes , 2013, Journal of Cell Science.

[16]  Nobutaka Hattori,et al.  PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy , 2012, Scientific Reports.

[17]  M. Overholtzer,et al.  Interaction Between FIP200 and ATG16L1 Distinguishes ULK1 Complex-Dependent and -Independent Autophagy , 2012, Nature Structural &Molecular Biology.

[18]  M. Fransen,et al.  Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. , 2012, Biochimica et biophysica acta.

[19]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[20]  S. Subramani,et al.  Pexophagy: The Selective Degradation of Peroxisomes , 2012, International journal of cell biology.

[21]  D. Green,et al.  Mitochondrial dysfunction in ataxia-telangiectasia. , 2012, Blood.

[22]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[23]  S. Subramani,et al.  Peroxisome assembly: matrix and membrane protein biogenesis , 2011, The Journal of cell biology.

[24]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[25]  M. Lavin,et al.  ATM Activation by Oxidative Stress , 2010, Science.

[26]  G. Mills,et al.  ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS , 2010, Proceedings of the National Academy of Sciences.

[27]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[28]  Harald W. Platta,et al.  Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import , 2009, Molecular and Cellular Biology.

[29]  I. Singh,et al.  Peroxisomal Dysfunction in Inflammatory Childhood White Matter Disorders: An Unexpected Contributor to Neuropathology , 2009, Journal of child neurology.

[30]  Yongqiang Chen,et al.  Superoxide is the major reactive oxygen species regulating autophagy , 2009, Cell Death and Differentiation.

[31]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[32]  Jennifer Lippincott-Schwartz,et al.  Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes , 2008, Proceedings of the National Academy of Sciences.

[33]  Y. Fujiki,et al.  The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. , 2008, Experimental cell research.

[34]  B. Warscheid,et al.  Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor* , 2008, Journal of Biological Chemistry.

[35]  F. Gonzalez,et al.  PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. , 2008, Toxicology.

[36]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[37]  M. Fransen,et al.  Ubiquitination of Mammalian Pex5p, the Peroxisomal Import Receptor* , 2007, Journal of Biological Chemistry.

[38]  Z. Elazar,et al.  Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 , 2007, The EMBO journal.

[39]  M. Löbrich,et al.  Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. , 2007, Cancer research.

[40]  S. Thoms,et al.  Peroxisomal matrix protein receptor ubiquitination and recycling. , 2006, Biochimica et biophysica acta.

[41]  Michael Schrader,et al.  Peroxisomes and oxidative stress. , 2006, Biochimica et biophysica acta.

[42]  C. Walker,et al.  Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning , 2006, The Journal of cell biology.

[43]  T. Pandita,et al.  Mammalian Rad9 Plays a Role in Telomere Stability, S- and G2-Phase-Specific Cell Survival, and Homologous Recombinational Repair , 2006, Molecular and Cellular Biology.

[44]  Keiji Tanaka,et al.  Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals* , 2006, Journal of Biological Chemistry.

[45]  N. Inestrosa,et al.  Peroxisomal Proliferation Protects from β-Amyloid Neurodegeneration* , 2005, Journal of Biological Chemistry.

[46]  Y. Fujiki,et al.  Shuttling Mechanism of Peroxisome Targeting Signal Type 1 Receptor Pex5: ATP-Independent Import and ATP-Dependent Export , 2005, Molecular and Cellular Biology.

[47]  J. Cregg,et al.  Pexophagy: The Selective Autophagy of Peroxisomes , 2005, Autophagy.

[48]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[49]  S. Subramani,et al.  Peroxisome turnover by micropexophagy: an autophagy-related process. , 2004, Trends in cell biology.

[50]  Jiri Bartek,et al.  Targeting the checkpoint kinases: chemosensitization versus chemoprotection , 2004, Nature Reviews Cancer.

[51]  M. Kastan,et al.  The many substrates and functions of ATM , 2000, Nature Reviews Molecular Cell Biology.

[52]  M. Hande,et al.  Inactivation of 14-3-3ς Influences Telomere Behavior and Ionizing Radiation-Induced Chromosomal Instability , 2000, Molecular and Cellular Biology.

[53]  T. Zwingman,et al.  ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. T. Kim,et al.  Substrate Specificities and Identification of Putative Substrates of ATM Kinase Family Members* , 1999, The Journal of Biological Chemistry.

[55]  M. Gatei,et al.  Localization of a Portion of Extranuclear ATM to Peroxisomes* , 1999, The Journal of Biological Chemistry.

[56]  R. Darnell,et al.  ATM binds to β-adaptin in cytoplasmic vesicles , 1998 .

[57]  H. Waterham,et al.  Peroxisome biogenesis , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[58]  T. Paull,et al.  The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. , 2012, TIBS -Trends in Biochemical Sciences. Regular ed.

[59]  N. Inestrosa,et al.  Peroxisomal proliferation protects from beta-amyloid neurodegeneration. , 2005, The Journal of biological chemistry.

[60]  T Hashimoto,et al.  Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. , 2001, Annual review of nutrition.

[61]  T. Hashimoto,et al.  PEROXISOMAL β-OXIDATION AND PEROXISOME PROLIFERATOR–ACTIVATED RECEPTOR α: An Adaptive Metabolic System , 2001 .

[62]  R. Darnell,et al.  ATM binds to beta-adaptin in cytoplasmic vesicles. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Moser,et al.  Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders , 1997, Nature Genetics.