Design and Characterization of a Room Temperature All-Solid-State Electronic Source Tunable From 2.48 to 2.75 THz

We report on the design, fabrication and test of an all-solid-state, frequency agile source that produces over across the 2.48-2.75 THz band at room temperature. This frequency-multiplied source is driven by a W-band synthesizer followed by a power amplifier that delivers 350-450 mW (25.5-26.5 dBm) and a cascade of three balanced frequency triplers. The first stage tripler is based on four power-combined six-anode GaAs Schottky diode devices, and the second stage tripler is based on two four-anode GaAs devices. The output tripler uses a single unbiased device featuring two anodes monolithically integrated onto a thin GaAs membrane. The source delivers a record at 2.58 THz at room temperature. This frequency multiplied source is analyzed with a Fourier transform spectrometer (FTS) and the unwanted harmonics are found to be at least 29 dB below the desired signal. This source, when used as the local oscillator for a hot-electron bolometer mixer, will enable heterodyne instruments for future space missions to map the cosmologically-important 2.675 THz HD molecular line.

[1]  W. Deal,et al.  Solid-state amplifiers for terahertz electronics , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[2]  G. Chattopadhyay,et al.  Schottky diode-based terahertz frequency multipliers and mixers , 2010 .

[3]  Choonsup Lee,et al.  A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840–900-GHz Band , 2010, IEEE Transactions on Microwave Theory and Techniques.

[4]  Alain Maestrini,et al.  Design of a High-Power 1 . 6 THz Schottky Tripler Using „ On-chip ‟ Power-Combining and Silicon Micromachining , 2011 .

[5]  J Grajal,et al.  Physics-Based Design and Optimization of Schottky Diode Frequency Multipliers for Terahertz Applications , 2010, IEEE Transactions on Microwave Theory and Techniques.

[6]  Goran L. Pilbratt,et al.  The First Mission: Baseline, Science Objectives and Operations , 1997 .

[7]  Mohammed Ismail,et al.  Sub-THz high gain wide-band low noise amplifiers in 90nm RF CMOS technology , 2010, 2010 17th IEEE International Conference on Electronics, Circuits and Systems.

[8]  Miroslav Micovic,et al.  W-band, 5W solid-state power amplifier/combiner , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[9]  Choonsup Lee,et al.  A Broadband 835–900-GHz Fundamental Balanced Mixer Based on Monolithic GaAs Membrane Schottky Diodes , 2010, IEEE Transactions on Microwave Theory and Techniques.

[10]  D. Li,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor C + detection of warm dark gas in diffuse clouds , 2010 .

[11]  I. Mehdi,et al.  A 540-640-GHz high-efficiency four-anode frequency tripler , 2005, IEEE Transactions on Microwave Theory and Techniques.

[12]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[13]  Ouali Acef,et al.  Optical Frequency Measurements Relying on a Mid-Infrared Frequency Standard , 2001 .

[14]  V Radisic,et al.  Demonstration of a 0.48 THz Amplifier Module Using InP HEMT Transistors , 2010, IEEE Microwave and Wireless Components Letters.

[15]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[16]  G. Chattopadhyay,et al.  Technology, Capabilities, and Performance of Low Power Terahertz Sources , 2011, IEEE Transactions on Terahertz Science and Technology.

[17]  Edik U. Rafailov,et al.  Efficient THz radiation from a nanocrystalline silicon-based multi-layer photomixer , 2009 .

[18]  P. Caselli,et al.  HERSCHEL MEASUREMENTS OF MOLECULAR OXYGEN IN ORION , 2011, 1108.0441.

[19]  James W. Lamb,et al.  Miscellaneous data on materials for millimetre and submillimetre optics , 1996 .

[20]  Alain Maestrini,et al.  Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source. , 2011, The Review of scientific instruments.

[21]  Thomas W. Crowe,et al.  GaAs Schottky diodes for THz mixing applications , 1992, Proc. IEEE.

[22]  J.T. Louhi The capacitance of a small circular Schottky diode for submillimeter wavelengths , 1994, IEEE Microwave and Guided Wave Letters.

[23]  Choonsup Lee,et al.  In-Phase Power-Combined Frequency Triplers at 300 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[24]  T. Phillips,et al.  Submillimeter astronomy (heterodyne spectroscopy) , 1992, Proc. IEEE.

[25]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[26]  Pieter Dieleman,et al.  The Pre-flight Performance of the Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005 .

[27]  Hui Wang,et al.  A Single-Waveguide In-Phase Power-Combined Frequency Doubler at 190 GHz , 2011, IEEE Microwave and Wireless Components Letters.

[28]  Stephan W Koch,et al.  High power room temperature, compact, narrow line thz source as a local oscillator for THz receivers , 2011 .