Performance of universal codes over infinite alphabets
暂无分享,去创建一个
[1] T. Uyematsu,et al. Asymptotical optimality of two variations of Lempel-Ziv codes for sources with countably infinite alphabet , 2002, Proceedings IEEE International Symposium on Information Theory,.
[2] W. Szpankowski,et al. The precise minimax redundancy , 2002, Proceedings IEEE International Symposium on Information Theory,.
[3] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[4] Jorma Rissanen,et al. Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.
[5] Erik Ordentlich,et al. Universal portfolios with side information , 1996, IEEE Trans. Inf. Theory.
[6] John C. Kieffer,et al. A unified approach to weak universal source coding , 1978, IEEE Trans. Inf. Theory.
[7] Peter Elias,et al. Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.
[8] László Györfi,et al. On Universal Noiseless Source Coding for Infinite Source Alphabets , 1993, Eur. Trans. Telecommun..
[9] A. Barron,et al. Asymptotic minimax regret for data compression, gambling and prediction , 1997, Proceedings of IEEE International Symposium on Information Theory.
[10] Raphail E. Krichevsky,et al. The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.
[11] Jorma Rissanen,et al. Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.
[12] Neri Merhav,et al. Universal Prediction , 1998, IEEE Trans. Inf. Theory.
[13] Dean P. Foster,et al. Universal codes for finite sequences of integers drawn from a monotone distribution , 2002, IEEE Trans. Inf. Theory.
[14] Lee D. Davisson,et al. Universal noiseless coding , 1973, IEEE Trans. Inf. Theory.
[15] A. Orlitsky,et al. Universal compression of unknown alphabets , 2002, Proceedings IEEE International Symposium on Information Theory,.
[16] T. Cover. Universal Portfolios , 1996 .