Automated crop field extraction from multi-temporal Web Enabled Landsat Data

Abstract An automated computational methodology to extract agricultural crop fields from 30 m Web Enabled Landsat data (WELD) time series is presented. The results for three 150 × 150 km WELD tiles encompassing rectangular, circular (center-pivot irrigation) and irregularly shaped fields in Texas, California and South Dakota are presented and compared to independent United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) cropland data layer (CDL) classifications. Coherent fields that are visually apparent were extracted with relatively limited apparent errors of omission or commission compared to the CDL classifications. This is due to several factors. First, the use of multi-temporal Landsat data, as opposed to single Landsat acquisitions, that enables crop rotations and inter-annual variability in the state of the vegetation to be accommodated for and provides more opportunities for cloud-free, non-missing and atmospherically uncontaminated surface observations. Second, the adoption of an object-based approach, namely the variational region-based geometric active contour method that enables robust segmentation with only a small number of parameters and that requires no training data. Third, the use of a watershed algorithm to decompose connected segments belonging to multiple fields into coherent isolated field segments and a geometry-based algorithm to detect and associate parts of circular fields together. A preliminary validation is presented to gain quantitative insights into the field extraction accuracy and to prototype a validation protocol including new geometric measures that quantify the accuracy of individual field objects. Implications and recommendations for future research and large-area applications are discussed.

[1]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Pierre Defourny,et al.  A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing , 2010 .

[3]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Edward Roy Davies A high speed algorithm for circular object location , 1987, Pattern Recognit. Lett..

[5]  Gunilla Borgefors,et al.  Integrated method for boundary delineation of agricultural fields in multispectral satellite images , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  Lorenzo Bruzzone,et al.  A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[7]  D. Legates,et al.  Crop identification using harmonic analysis of time-series AVHRR NDVI data , 2002 .

[8]  Matthew C. Hansen,et al.  Corn and Soybean Mapping in the United States Using MODIS Time‐Series Data Sets , 2007 .

[9]  Gautam D. Badhwar,et al.  Based Crop Recognition , 1987 .

[10]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[11]  David P. Roy,et al.  The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30m Landsat Data Product Generation , 2013 .

[12]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[13]  M. Schaepman,et al.  Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 , 2009 .

[14]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[15]  Andrew E. Suyker,et al.  A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data , 2010 .

[16]  Gautam D. Badhwar,et al.  Field size, length, and width distributions based on LACIE ground truth data. [large area crop inventory experiment] , 1980 .

[17]  Mutlu Ozdogan,et al.  The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis , 2010 .

[18]  David P. Roy,et al.  Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.

[20]  Mark Berman,et al.  Segmenting multispectral Landsat TM images into field units , 2002, IEEE Trans. Geosci. Remote. Sens..

[21]  David M. Johnson A 2010 map estimate of annually tilled cropland within the conterminous , 2013 .

[22]  David B. Lobell,et al.  Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties , 2003 .

[23]  B. Markham,et al.  Forty-year calibrated record of earth-reflected radiance from Landsat: A review , 2012 .

[24]  Bruce D. Maxwell,et al.  The role of the Conservation Reserve Program in controlling rural residential development , 2001 .

[25]  E. Carfagna,et al.  Using Remote Sensing for Agricultural Statistics , 2005 .

[26]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[27]  F. Hall,et al.  Global Crop Forecasting , 1980, Science.

[28]  J. Mustard,et al.  Green leaf phenology at Landsat resolution: Scaling from the field to the satellite , 2006 .

[29]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[30]  David P. Roy,et al.  The impact of misregistration upon composited wide field of view satellite data and implications for change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[31]  Andrew F. Laine,et al.  Circle recognition through a 2D Hough Transform and radius histogramming , 1999, Image Vis. Comput..

[32]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[33]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  G. Badhwar,et al.  Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation , 1984 .

[35]  Petros Maragos,et al.  Optimum design of chamfer distance transforms , 1998, IEEE Trans. Image Process..

[36]  Compton J. Tucker,et al.  Monitoring corn and soybean crop development with hand-held radiometer spectral data , 1979 .

[37]  Frédéric Baret,et al.  Developments in the 'validation' of satellite sensor products for the study of the land surface , 2000 .

[38]  Bryan C. Pijanowski,et al.  Evidence for increased monoculture cropping in the Central United States , 2013 .

[39]  Ignacy Duleba,et al.  Circular Object Detection Using a Modified Hough Transform , 2008, Int. J. Appl. Math. Comput. Sci..

[40]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[41]  Jouko Niinimäki,et al.  Recognition of highly overlapping ellipse-like bubble images , 2005 .

[42]  N. R. Rao,et al.  RETRACTED ARTICLE: Development of a crop‐specific spectral library and discrimination of various agricultural crop varieties using hyperspectral imagery , 2008 .

[43]  Helmut Mayer,et al.  Object extraction in photogrammetric computer vision , 2008 .

[44]  David P. Roy,et al.  Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project , 2011 .

[45]  Darrel L. Williams,et al.  Landsat sensor performance: history and current status , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[47]  H. H. Wooten Major Uses of Land in the United States , 1953 .

[48]  David C. Hogg,et al.  The use of digital map data in the segmentation and classification of remotely-sensed images , 1988, Int. J. Geogr. Inf. Sci..

[49]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[50]  Brian McConkey,et al.  Agriculture field characterization using aerial photograph and satellite imagery , 2004, IEEE Geoscience and Remote Sensing Letters.

[51]  Geoffrey J. Hay,et al.  Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline , 2008 .

[52]  Raj S. Chhikara,et al.  Field size distributions for selected agricultural crops in the United States and Canada , 1986 .

[53]  D. Roy,et al.  Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction☆ , 2014 .

[54]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[55]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[56]  L. Joshua Leon,et al.  Watershed-Based Segmentation and Region Merging , 2000, Comput. Vis. Image Underst..

[57]  Curt H. Davis,et al.  A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[58]  R. Mueller,et al.  The 2009 Cropland Data Layer. , 2010 .

[59]  James C. Storey,et al.  Four years of Landsat-7 on-orbit geometric calibration and performance , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[61]  B. Wardlow,et al.  Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains , 2008 .

[62]  D. Roy,et al.  Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) , 2014 .

[63]  Jeanne B. Etheridge,et al.  AREA ESTIMATION OF CROPS BY DIGITAL ANALYSIS OF LANDSAT DATA. , 1978 .

[64]  Damien Sulla-Menashe,et al.  Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index , 2012 .

[65]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[66]  D. Roy,et al.  The suitability of multi-temporal web-enabled Landsat data NDVI for phenological monitoring – a comparison with flux tower and MODIS NDVI , 2012 .

[67]  Filiberto Pla,et al.  Recognition of Partial Circular Shapes from Segmented Contours , 1996, Comput. Vis. Image Underst..

[68]  Liangpei Zhang,et al.  An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[69]  C. Woodcock,et al.  Resolution dependent errors in remote sensing of cultivated areas , 2006 .

[70]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[71]  R. DeFries,et al.  Agricultural intensification and changes in cultivated areas, 1970–2005 , 2009, Proceedings of the National Academy of Sciences.

[72]  Werner Nagel Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Edited by Jean Serra , 1870 .

[73]  Mark Sullivan,et al.  Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project , 2010, Remote. Sens..

[74]  Christopher A. Barnes,et al.  Completion of the 2006 National Land Cover Database for the conterminous United States. , 2011 .

[75]  Zhengwei Yang,et al.  Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program , 2011 .