Modélisation macroscopique de piles PEFC et SOFC pour l'étude de leur couplage

Les travaux de cette these s’inscrivent dans le cadre du projet europeen « FELICITAS », dont l’ambition est le developpement de generateurs piles a combustible performants pour les applications transport de type ferroviaire, routier lourd et maritime. Les travaux presentes sont une contribution a l’evaluation d’une hybridation de sources originale ou sont couplees en serie une pile haute temperature de type oxyde solide (SOFC) alimentee en diesel et une pile basse temperature de type electrolyte polymere (PEFC). La SOFC participe ainsi a la fourniture de puissance electrique et contribue egalement au procede de purification du combustible destine a la PEFC en oxydant une fraction de monoxyde de carbone. Un modele macroscopique a ete developpe. La complexite d’une pile a combustible reside dans la prise en compte de son caractere multiphysique : elle est le siege des phenomenes electrochimiques, fluidiques et thermiques. Cette difficulte a ete surmontee en utilisant une analogie avec un circuit electrique equivalent pour unifier ses trois aspects. Un modele de SOFC est propose. Le combustible est un melange d’hydrogene, d’azote, de monoxyde de carbone, de dioxyde de carbone et de vapeur d’eau, de composition proche de celle obtenue a la sortie d’un reformeur. Un banc d’essai specifique a ete concu et realise pour le test de petits empilements afin de valider le modele. Un modele de pile PEFC isotherme a egalement ete developpe sur le meme principe. La validation experimentale a ete faite sur un banc disponible au laboratoire. Une bibliotheque des composants fluidiques d’un generateur a pile combustible a ete enrichie, notamment par un modele de compresseur d’air.

[1]  Norbert Wagner,et al.  Investigation of solid oxide fuel cell short stacks for mobile applications by electrochemical impedance spectroscopy , 2008 .

[2]  Biao Zhou,et al.  A general model of proton exchange membrane fuel cell , 2008 .

[3]  Maher A.R. Sadiq Al-Baghdadi,et al.  Three-dimensional computational fluid dynamics model of a tubular-shaped PEM fuel cell , 2008 .

[4]  Suman Basu,et al.  Modeling two-phase flow in PEM fuel cell channels , 2008 .

[5]  Song-Yul Choe,et al.  Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects , 2008 .

[6]  A. Bouscayrol,et al.  Energetic Macroscopic Representation of a Fuel Cell-Supercapacitor System , 2007, 2007 IEEE Vehicle Power and Propulsion Conference.

[7]  Guilan Wang,et al.  3-D model of thermo-fluid and electrochemical for planar SOFC , 2007 .

[8]  Yoshitaka Inui,et al.  Three dimensional analysis of planar solid oxide fuel cell stack considering radiation , 2007 .

[9]  Bouchra Wahdame,et al.  Analyse et optimisation du fonctionnement de piles à combustible par la méthode des plans d'expériences , 2006 .

[10]  Shou-Shing Hsieh,et al.  Characterization of the operational parameters of a H2/air micro PEMFC with different flow fields by impedance spectroscopy☆ , 2006 .

[11]  R. Dougal,et al.  Parameter setting and analysis of a dynamic tubular SOFC model , 2006 .

[12]  A. Fedorov,et al.  Reduced-order transient thermal modeling for SOFC heating and cooling , 2006 .

[13]  Yoshitaka Inui,et al.  Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel , 2006 .

[14]  Biao Huang,et al.  Nonlinear state space modeling and simulation of a SOFC fuel cell , 2006, 2006 American Control Conference.

[15]  Remi Saisset,et al.  Bond Graph model of a PEM fuel cell , 2006 .

[16]  Seddik Bacha,et al.  Comparison of energy management controls for fuel cell applications , 2006 .

[17]  W. Bessler,et al.  Impedance Simulations of SOFC Pattern and Cermet Anodes from Detailed Electrochemical Models , 2006 .

[18]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[19]  Biao Huang,et al.  Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance , 2005 .

[20]  Daniel Hissel,et al.  ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR , 2005 .

[21]  M. Chnani Modélisation d'un générateur pile à combustible à électrolyte polymère , 2005 .

[22]  N. Sammes,et al.  Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects , 2005 .

[23]  Tong Seop Kim,et al.  Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model , 2005 .

[24]  Nigel M. Sammes,et al.  SOFC mathematic model for systems simulations-Part 2: definition of an analytical model , 2005 .

[25]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[26]  P.N. Enjeti,et al.  An advanced power converter topology to significantly improve the CO tolerance of the PEM fuel cell power systems , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[27]  Jérôme Lachaize,et al.  Etude des stratégies et des structures de commande pour le pilotage des systèmes énergétiques à Pile à Combustible (PAC) destinés à la traction. (Missing) , 2004 .

[28]  Paola Costamagna,et al.  Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) , 2004 .

[29]  A. Feliachi,et al.  Dynamic and transient analysis of power distribution systems with fuel Cells-part I: fuel-cell dynamic model , 2004, IEEE Transactions on Energy Conversion.

[30]  S. Campanari,et al.  Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry , 2004 .

[31]  D. Favrat,et al.  CFD simulation tool for solid oxide fuel cells , 2004 .

[32]  M. Khaleel,et al.  A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC® , 2004 .

[33]  M. Chyu,et al.  Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack , 2003 .

[34]  A. M. Khambadkone,et al.  Dynamic modelling of fuel cell with power electronic current and performance analysis , 2003, The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003..

[35]  B. Diong,et al.  An improved small-signal model of the dynamic behavior of PEM fuel cells , 2003, IEEE Transactions on Industry Applications.

[36]  Thomas Hocker,et al.  Efficient simulation of fuel cell stacks with the volume averaging method , 2003 .

[37]  S. Cocchi,et al.  A global thermo-electrochemical model for SOFC systems design and engineering , 2003 .

[38]  S. Simner,et al.  Experimentally-Calibrated, Spreadsheet-Based SOFC Unit-Cell Performance Model , 2002 .

[39]  Remi Saisset,et al.  Study of thermal imbalances in arrangements of solid oxide fuel cells by mean of bond graph modelling , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[40]  Hee Chun Lim,et al.  Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack , 2002 .

[41]  Comas Haynes,et al.  Simulating process settings for unslaved SOFC response to increases in load demand , 2002 .

[42]  H. Ho,et al.  Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant , 2002 .

[43]  Khaliq Ahmed,et al.  Approach to equilibrium of the water-gas shift reaction on a Ni/zirconia anode under solid oxide fuel-cell conditions , 2001 .

[44]  I. Yasuda,et al.  3-D model calculation for planar SOFC , 2001 .

[45]  Tohru Kato,et al.  Numerical analysis of output characteristics of tubular SOFC with internal reformer , 2001 .

[46]  Aristide F. Massardo,et al.  Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine , 2001 .

[47]  K. Agbossou,et al.  Dynamic behavior of a PEM fuel cell stack for stationary applications , 2001 .

[48]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[49]  J. R. McDonald,et al.  An integrated SOFC plant dynamic model for power systems simulation , 2000 .

[50]  W. Schnurnberger,et al.  Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells , 1998 .

[51]  S. C. Singhal,et al.  Recent progress in tubular solid oxide fuel cell technology , 1997 .

[52]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[53]  C. Chamberlin,et al.  Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation , 1995 .

[54]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[55]  H. Ueda,et al.  Natural gas reformed fuel cell power generation systems-a comparison of three system efficiencies , 1989, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference.

[56]  M. Tekin Contribution à l'optimisation énergétique d'un système pile à combustible embarqué , 2004 .

[57]  J. Granier,et al.  Des concepts innovants pour les plaques bipolaires , 2004 .

[58]  J.M. Kauffmann,et al.  Dynamic PEM fuel cell modeling for automotive applications , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[59]  R. Glises,et al.  Transient thermal computation of a PEM fuel cell by a nodal modeling , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[60]  M. Khaleel,et al.  Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks , 2003 .

[61]  Huei Peng,et al.  SIMULATION AND ANALYSIS OF TRANSIENT FUEL CELL SYSTEM PERFORMANCE BASED ON A DYNAMIC REACTANT FLOW MODEL , 2002 .

[62]  Azra Selimovic,et al.  Modelling of Solid Oxide Fuel Cells Applied to the Analysis of Integrated Systems with Gas Turbines , 2002 .

[63]  Stefano Campanari,et al.  Thermodynamic model and parametric analysis of a tubular SOFC module , 2001 .

[64]  A. Bieberle,et al.  The electrochemistry of solid oxide fuel cell anodes , 2000 .

[65]  L. Manin Modèles de comportement multiniveaux pour la Conception Mécanique Assistée par Ordinateur : application à la prévision du comportement thermique de transmissions de puissance par engrenages , 1999 .

[66]  David Picot,et al.  Étude numérique et expérimentale des écoulements dans une pile à combustible de type pem adaptable aux applications embarquées , 1998 .

[67]  Luc Gerbaux Modélisation d'une pile à combustible de type hydrogène/air et validation expérimentale , 1996 .

[68]  J. C. Amphlett,et al.  Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. II: Empirical model development , 1995 .

[69]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .