Covers of the Abelian Variety of Generalized MV-Algebras

Using the categorical equivalence of the class of generalized MV-algebras with the class of unital ℓ-groups, we describe all varieties of symmetric top abelian unital ℓ-groups that cover the variety 𝒜 uℓ of abelian unital ℓ-groups. Equivalently, we describe all cover varieties of the variety of MV-algebras, ℳ𝒱, within the variety of generalized MV-algebras admitting only one negation and each of whose maximal ideals is normal. In particular, there are continuum many representable varieties of generalized MV-algebras that cover ℳ𝒱.

[1]  Paul F. Conrad,et al.  Lattice ordered groups , 1970 .

[2]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[3]  Anatolij Dvurečenskij,et al.  On n-perfect GMV-algebras , 2008 .

[4]  M. Darnel Special-valued l-groups and Abelian covers , 1987 .

[5]  A. Di Nola,et al.  Perfect GMV-Algebras , 2008 .

[6]  M. Darnel Theory of Lattice-Ordered Groups , 1994 .

[7]  E. Scrimger A large class of small varieties of lattice-ordered groups , 1975 .

[8]  W. Holland,et al.  A very large class of small varieties of lattice-ordered groups 1 , 1994 .

[9]  Anatolij Dvurečenskij,et al.  Komori’s characterization and top varieties of GMV-algebras , 2009 .

[10]  Ján Jakubík,et al.  On Varieties of Pseudo MV-Algebras , 2003 .

[11]  A. Dvurečenskij,et al.  On pseudo MV-algebras , 2001, Soft Comput..

[12]  Anatolij Dvurečenskij,et al.  Top Varieties of Generalized MV-Algebras and Unital Lattice-Ordered Groups , 2007 .

[13]  Jiří Rachůnek,et al.  A non-commutative generalization of MV-algebras , 2002 .

[14]  A. Dvurecenskij Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.

[15]  E. C. Weinberg Free lattice-ordered Abelian groups , 1963 .

[16]  Anatolij Dvurecenskij,et al.  States on Pseudo MV-Algebras , 2001, Stud Logica.

[17]  Anatolij Dvure States on Pseudo MV-algebras , 2001 .

[18]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[19]  V. Kopytov,et al.  Description of covers of the variety of Abelian lattice-ordered groups , 1987 .

[20]  Michael R. Darnel,et al.  Above and below subgroups of a lattice-ordered group , 1986 .

[21]  Yuichi Komori Super-Łukasiewicz propositional logics , 1981, Nagoya Mathematical Journal.

[22]  Norman R. Reilly,et al.  Varieties of lattice ordered groups that contain no non-abelian o-groups are solvable , 1986 .

[23]  Jorge Martinez,et al.  Locally conditioned radical classes of lattice-ordered groups , 1992 .

[24]  Yuichi Komori SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS , 2004 .

[25]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .