Optimisation of multiple responses for WEDM processes using weighted principal components

Taguchi method is widely used for optimisation of various processes. Using Taguchi method, the parametric settings can be optimised with respect to one performance characteristic (response) at a time, whereas wire electrical discharge machining (WEDM) processes require optimisation of multiple performance characteristics. Researchers have attempted several approaches but determination of the optimal process settings that can optimise multiple performance measures (responses) of WEDM operations still remains an important issue. In this paper, weighted principal component (WPC) method is used to optimise the multiple responses of WEDM processes. The results show that the WPC method offers significantly better overall quality than the other approaches.

[1]  C. Su,et al.  Multi-response robust design by principal component analysis , 1997 .

[2]  A. Bendell,et al.  Taguchi methods : applications in world industry , 1989 .

[3]  Yunn-Shiuan Liao,et al.  A study on the machining-parameters optimization of wire electrical discharge machining , 1997 .

[4]  Yunn-Shiuan Liao,et al.  Determination of finish-cutting operation number and machining-parameters setting in wire electrical discharge machining , 1999 .

[5]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[6]  Kamlakar P Rajurkar,et al.  Analysis and optimization of parameter combinations in wire electrical discharge machining , 1991 .

[7]  Amar Patnaik,et al.  Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method , 2007 .

[8]  B. Bhattacharyya,et al.  Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy , 2005 .

[9]  M. S. Shunmugam,et al.  Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm , 2005 .

[10]  Alakesh Manna,et al.  Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC , 2006 .

[11]  M. S. Shunmugam,et al.  Data mining applied to wire-EDM process , 2003 .

[12]  Margaret A. Nemeth,et al.  Applied Multivariate Methods for Data Analysis , 1998, Technometrics.

[13]  N. Logothetis,et al.  Characterizing and optimizing multi‐response processes by the taguchi method , 1988 .

[14]  Trevor A Spedding,et al.  Parametric optimization and surface characterization of wire electrical discharge machining process , 1997 .

[15]  Hung-Chang Liao,et al.  Multi-response optimization using weighted principal component , 2006 .

[16]  Asit Baran Puri,et al.  An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM , 2003 .

[17]  Y. S. Tarng,et al.  Determination of optimal cutting parameters in wire electrical discharge machining , 1995 .

[18]  T. R. Bement,et al.  Taguchi techniques for quality engineering , 1995 .

[19]  Trevor A Spedding,et al.  Study on modeling of wire EDM process , 1997 .

[20]  Nihat Tosun,et al.  A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method , 2004 .

[21]  R. Ramakrishnan,et al.  Multi response optimization of wire EDM operations using robust design of experiments , 2006 .

[22]  K. Chiang,et al.  Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis , 2006 .

[23]  Jiju Antony,et al.  Multi‐response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis , 2000 .