Flexible electronics based on inorganic nanowires.

Flexible electronics have gained considerable research interest in the recent years because of their special features and potential applications in flexible displays, artificial skins, sensors, sustainable energy, etc. With unique geometry, outstanding electronic/optoelectronic properties, excellent mechanical flexibility and good transparency, inorganic nanowires (NWs) offer numerous insights and opportunities for flexible electronics. This article provides a comprehensive review of the inorganic NW based flexible electronics studied in the past decade, ranging from NWs synthesis and assembly to several important flexible device and energy applications, including transistors, sensors, display devices, memories and logic gates, as well as lithium ion batteries, supercapacitors, solar cells and generators. The integration of various flexible nanodevices into a self-powered system was also briefly discussed. Finally, several future research directions and opportunities of inorganic NW flexible and portable electronics are proposed.

[1]  Kazuhito Tsukagoshi,et al.  High-performance transparent flexible transistors using carbon nanotube films , 2006 .

[2]  Wei Wang,et al.  Enhancing Ni–Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces , 2011 .

[3]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[4]  John A Rogers,et al.  Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates. , 2006, Small.

[5]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[6]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[7]  Elizabeth C. Dickey,et al.  Vapor–Liquid–Solid Growth of Silicon–Germanium Nanowires , 2003 .

[8]  Younan Xia,et al.  Crystalline Silver Nanowires by Soft Solution Processing , 2002 .

[9]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[10]  Xinyuan Xia,et al.  Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. , 2011, Nano letters.

[11]  L. Mahadevan,et al.  Nested self-similar wrinkling patterns in skins , 2005, Nature materials.

[12]  Zheng Lou,et al.  Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices , 2014 .

[13]  Liangti Qu,et al.  An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. , 2013, Physical chemistry chemical physics : PCCP.

[14]  Wenhui Shi,et al.  High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. , 2011, ACS nano.

[15]  Huisheng Peng,et al.  Carbon Nanostructured Fibers As Counter Electrodes in Wire-Shaped Dye-Sensitized Solar Cells , 2014 .

[16]  Bin Liu,et al.  Single‐Crystalline p‐Type Zn3As2 Nanowires for Field‐Effect Transistors and Visible‐Light Photodetectors on Rigid and Flexible Substrates , 2013 .

[17]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[18]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[19]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[20]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[21]  Chen Xu,et al.  Structural engineering for high energy and voltage output supercapacitors. , 2013, Chemistry.

[22]  Chongwu Zhou,et al.  Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique , 2010 .

[23]  Ahmad Umar,et al.  Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism : Structural and optical properties , 2005 .

[24]  B. Wiley,et al.  The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates , 2011, Advanced materials.

[25]  Zhong Lin Wang,et al.  Pattern and feature designed growth of ZnO nanowire arrays for vertical devices. , 2006, The journal of physical chemistry. B.

[26]  Yeshayahu Lifshitz,et al.  Oxide‐Assisted Growth of Semiconducting Nanowires , 2003 .

[27]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[28]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[29]  Fei Wei,et al.  Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage , 2009 .

[30]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[31]  Chongwu Zhou,et al.  Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. , 2011, ACS nano.

[32]  Jong Hak Kim,et al.  All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires , 2013 .

[33]  Xin Cai,et al.  Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells , 2012 .

[34]  B. Hekmatshoar,et al.  Amorphous-Silicon Thin-Film Transistors Fabricated at 300 $^{\circ}\hbox{C}$ on a Free-Standing Foil Substrate of Clear Plastic , 2007, IEEE Electron Device Letters.

[35]  Hongwei Wu,et al.  Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters , 2011 .

[36]  D. Fan,et al.  Catalyst-free growth and crystal structures of CdO nanowires and nanotubes , 2009 .

[37]  DARRAN R. CAIRNS,et al.  Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays , 2005, Proceedings of the IEEE.

[38]  Peter C. Eklund,et al.  Optical phonons in polar semiconductor nanowires , 2003 .

[39]  Lin-Bao Luo,et al.  Photoconductivity of a Single Small‐Molecule Organic Nanowire , 2008 .

[40]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[41]  Younan Xia,et al.  Introducing organic nanowire transistors , 2008 .

[42]  Taihong Wang,et al.  Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties , 2006 .

[43]  Kuo-Chuan Ho,et al.  Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells , 2010 .

[44]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[45]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[46]  Mark G. Blamire,et al.  Epitaxial Growth of Vertically Aligned and Branched Single‐Crystalline Tin‐Doped Indium Oxide Nanowire Arrays , 2006 .

[47]  Alexander Eychmüller,et al.  A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life , 2013, Advanced materials.

[48]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[49]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[50]  W. Jin,et al.  Ultraviolet photodetection properties of indium oxide nanowires , 2003 .

[51]  Wolfgang Tremel,et al.  Interaction of alkaline metal cations with oxidic surfaces: effect on the morphology of SnO2 nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[52]  Jiansheng Jie,et al.  Aligned ultralong nanowire arrays and their application in flexible photodetector devices , 2012 .

[53]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[54]  Menghe Miao,et al.  High‐Performance Two‐Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays , 2013, Advanced materials.

[55]  Yi Cui,et al.  Lithium‐Ion Textile Batteries with Large Areal Mass Loading , 2011 .

[56]  Yong Zhou,et al.  Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells. , 2012, Nanoscale.

[57]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[58]  Chaoyi Yan,et al.  Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time , 2010 .

[59]  Li-Ying Zhang,et al.  Fe3O4 nanowire arrays synthesized in AAO templates , 2005 .

[60]  Zhiyong Fan,et al.  Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires , 2008, 0807.0946.

[61]  Jong-Hyun Ahn,et al.  Coplanar-gate transparent graphene transistors and inverters on plastic. , 2012, ACS nano.

[62]  Nam-Gyu Park,et al.  Transferred vertically aligned N-doped carbon nanotube arrays: use in dye-sensitized solar cells as counter electrodes. , 2011, Chemical communications.

[63]  Kuo-Chuan Ho,et al.  CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. , 2012, ACS nano.

[64]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[65]  Jing Xu,et al.  Growth of Directly Transferable In2O3 Nanowire Mats for Transparent Thin‐film Transistor Applications , 2011, Advanced materials.

[66]  Zhixiang Wei,et al.  Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window , 2012 .

[67]  John E. Anthony,et al.  Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics , 2010 .

[68]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[69]  Richard A. Vaia,et al.  Bottom-Up Synthesis of Polymer Nanocomposites and Molecular Composites: Ionic Exchange with PMMA Latex , 2002 .

[70]  Bin Liu,et al.  Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. , 2013, Small.

[71]  Espen Olsen,et al.  Dissolution of platinum in methoxy propionitrile containing LiI/I2 , 2000 .

[72]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[73]  Guanghui Cheng,et al.  Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. , 2011, Nanoscale.

[74]  Chongwu Zhou,et al.  Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. , 2012, ACS nano.

[75]  Michael Grätzel,et al.  Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells , 2013, Scientific Reports.

[76]  Bo Liang,et al.  Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. , 2012, Optics express.

[77]  F. Göktepe,et al.  Weavable dye sensitized solar cells exploiting carbon nanotube yarns , 2013 .

[78]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[79]  Po-Chiang Chen,et al.  Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films , 2009 .

[80]  Hal-Bon Gu,et al.  Dye-sensitized solar cells based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) nanofibers , 2013, Polymer Bulletin.

[81]  Po-Chiang Chen,et al.  High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. , 2009, ACS nano.

[82]  Wei Wang,et al.  Transparent, Double‐Sided, ITO‐Free, Flexible Dye‐Sensitized Solar Cells Based on Metal Wire/ZnO Nanowire Arrays , 2012 .

[83]  M. Armand,et al.  Building better batteries , 2008, Nature.

[84]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[85]  Lars-Erik Wernersson,et al.  Diameter-Dependent photocurrent in InAsSb nanowire infrared photodetectors. , 2013, Nano letters.

[86]  Lisheng Wang,et al.  Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives , 2005 .

[87]  Hong-Yan Chen,et al.  Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells , 2012 .

[88]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[89]  Ananth Dodabalapur,et al.  Radio frequency rectifiers based on organic thin-film transistors , 2006 .

[90]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[91]  Giorgio Sberveglieri,et al.  Vertically aligned TiO2 nanotubes on plastic substrates for flexible solar cells. , 2011, Small.

[92]  Xiao Hua Yang,et al.  Low-cost SnS(x) counter electrodes for dye-sensitized solar cells. , 2013, Chemical communications.

[93]  Dong Jin Lee,et al.  Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium‐Ion Battery Anodes , 2013 .

[94]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[95]  Bo Liang,et al.  Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. , 2013, Optics express.

[96]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[97]  Jan Meiss,et al.  Flexible inorganic nanowire light-emitting diode. , 2008, Nano letters.

[98]  Bin Liu,et al.  Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes. , 2013, Chemistry.

[99]  Jonathan L. Sessler,et al.  Dipyrrolylquinoxalines: Efficient Sensors for Fluoride Anion in Organic Solution , 1999 .

[100]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[101]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[102]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[103]  Zhigang Zhao,et al.  Robust and aligned carbon nanotube/titania core/shell films for flexible TCO-free photoelectrodes. , 2013, Small.

[104]  Yadong Li,et al.  Cylindrical Silver Nanowires: Preparation, Structure, and Optical Properties , 2005 .

[105]  Junbiao Peng,et al.  High-performance, all-solution-processed organic nanowire transistor arrays with inkjet-printing patterned electrodes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[106]  John E Sader,et al.  Mechanical properties of ZnO nanowires. , 2008, Physical review letters.

[107]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[108]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[109]  Charles M Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[110]  Po-Chiang Chen,et al.  Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. , 2008, Nano letters.

[111]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[112]  Cherie R. Kagan,et al.  Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors. , 2011, ACS nano.

[113]  Haegyeom Kim,et al.  Recent progress on flexible lithium rechargeable batteries , 2014 .

[114]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[115]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[116]  L. Samuelson,et al.  Growth and Optical Properties of Strained GaAs−GaxIn1-xP Core−Shell Nanowires , 2005 .

[117]  Bin Liu,et al.  Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes , 2013, Nano Research.

[118]  Wei Liu,et al.  An inverted fabrication method towards a flexible dye sensitized solar cell based on a free-standing TiO2 nanowires membrane , 2012 .

[119]  Yong Zhou,et al.  Fiber dye-sensitized solar cells consisting of TiO2 nanowires arrays on Ti thread as photoanodes through a low-cost, scalable route , 2013 .

[120]  Natarajan Rajalakshmi,et al.  Flexible polyester cellulose paper supercapacitor with a gel electrolyte. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[121]  Jing Xu,et al.  Zinc-oleate complex as efficient precursor for 1-D ZnO nanostructures: synthesis and properties , 2011 .

[122]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[123]  Kang L. Wang,et al.  Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. , 2011, ACS nano.

[124]  Jianyong Ouyang,et al.  Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells , 2008 .

[125]  Y. Chen,et al.  Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration. , 2008, Optics express.

[126]  Yanhong Luo,et al.  In Situ Preparation of a Flexible Polyaniline/Carbon Composite Counter Electrode and Its Application in Dye-Sensitized Solar Cells , 2010 .

[127]  A. Alec Talin,et al.  A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[128]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[129]  Nosang V. Myung,et al.  Magnetic Alignment of Nanowires , 2005 .

[130]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[131]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[132]  Changjian Lin,et al.  High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. , 2011, Nano letters.

[133]  M. J. Rost,et al.  Pushing the limits of SPM , 2005 .

[134]  Jörg Appenzeller,et al.  Carbon Nanotubes for High-Performance Electronics—Progress and Prospect , 2008, Proceedings of the IEEE.

[135]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[136]  Bo Liang,et al.  Metal oxide nanowire transistors , 2012 .

[137]  Young-Jun Park,et al.  Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode , 2010 .

[138]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[139]  Andreas Greiner,et al.  Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes , 2009 .

[140]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[141]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[142]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  M. Grätzel,et al.  CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[144]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[145]  Yang-Fan Xu,et al.  Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells , 2013, Scientific Reports.

[146]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[147]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[148]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[149]  Otto Zhou,et al.  Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes , 2000 .

[150]  Mikio Kumagai,et al.  Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells , 2003 .

[151]  Chain-Shu Hsu,et al.  Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells , 2012, Advanced materials.

[152]  Zhong Lin Wang,et al.  Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. , 2008, Nano letters.

[153]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[154]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[155]  Guo-Qiang Lo,et al.  High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode , 2008 .

[156]  Man Gu Kang,et al.  Dye-Sensitized TiO2 Solar Cells Using Polymer Gel Electrolytes Based on PVdF-HFP , 2004 .

[157]  Li Wang,et al.  High-Performance Blue-Light Photodetectors Based on Single-Crystal ZnSe Nanoribbons with Controlled Gallium Doping , 2012 .

[158]  Bo Liang,et al.  Contact printing of horizontally aligned Zn2GeO4 and In2Ge2O7 nanowire arrays for multi-channel field-effect transistors and their photoresponse performances , 2013 .

[159]  Wilhelm T S Huck Hierarchical wrinkling , 2005, Nature materials.

[160]  John P. Ferraris,et al.  Vanadium Oxide Nanowire–Carbon Nanotube Binder‐Free Flexible Electrodes for Supercapacitors , 2011 .

[161]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.

[162]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[163]  Li-Ying Zhang,et al.  An investigation of thermal decomposition of β-FeOOH nanowire arrays assembled in AAO templates , 2007 .

[164]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[165]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[166]  Xiaodong Chen,et al.  A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes , 2012 .

[167]  Bin Liu,et al.  Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries , 2012 .

[168]  R. Hamers Flexible electronic futures , 2001, Nature.

[169]  Pai-Chun Chang,et al.  Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device , 2010 .

[170]  E. Xie,et al.  An overview of carbon materials for flexible electrochemical capacitors. , 2013, Nanoscale.

[171]  Xiaojuan Hou,et al.  Core–Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High‐Performance Materials for Flexible, All‐Solid‐State, Electrochemical Capacitors , 2014 .

[172]  K. A. Jackson,et al.  Study of the Filamentary Growth of Silicon Crystals from the Vapor , 1964 .

[173]  Giuseppe Gigli,et al.  Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. , 2011, ACS applied materials & interfaces.

[174]  Zhaokang Hu,et al.  Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process , 2003 .

[175]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[176]  Chaoyi Yan,et al.  Recent Progresses in Improving Nanowire Photodetector Performances , 2012 .

[177]  A. Javey,et al.  Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing , 2007 .

[178]  Scott A. Norris,et al.  Steady growth of nanowires via the vapor-liquid-solid method , 2007 .

[179]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[180]  Chao-Hsin Chien,et al.  Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells , 2013 .

[181]  Tae-Woo Lee,et al.  Electrospun Organic Nanofiber Electronics and Photonics , 2013 .

[182]  Bruce Dunn,et al.  High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. , 2012, ACS nano.

[183]  Fei Zhao,et al.  Super‐Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries , 2013 .

[184]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[185]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[186]  Mowafak Al-Jassim,et al.  Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices , 2013 .

[187]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[188]  Jian Chang,et al.  Coaxial fiber supercapacitor using all-carbon material electrodes. , 2013, ACS nano.

[189]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[190]  Tarik J. Dickens,et al.  Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells , 2013 .

[191]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[192]  Pulickel M. Ajayan,et al.  Transparent, flexible supercapacitors from nano-engineered carbon films , 2012, Scientific Reports.

[193]  Huisheng Peng,et al.  Novel solar cells in a wire format. , 2013, Chemical Society reviews.

[194]  Yong-Young Noh,et al.  Large-scale organic nanowire lithography and electronics , 2013, Nature Communications.

[195]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[196]  Yulin Deng,et al.  Solution synthesis of one-dimensional ZnO nanomaterials and their applications. , 2010, Nanoscale.

[197]  Qiang Zhang,et al.  Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors , 2012 .

[198]  Guozhen Shen,et al.  High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes , 2013 .

[199]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[200]  Giorgio Sberveglieri,et al.  Flexible dye sensitized solar cells using TiO2 nanotubes , 2011 .

[201]  Jun Zhang,et al.  Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. , 2011, ACS nano.

[202]  John A. Rogers,et al.  Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics , 2012 .

[203]  Meilin Liu,et al.  Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. , 2013, Nano letters.

[204]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[205]  Zhiyong Fan,et al.  Parallel Array Inas Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics , 2022 .

[206]  Jin Young Kim,et al.  Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes† , 2012 .

[207]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[208]  Chi-Hwan Han,et al.  All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes , 2012, Nanotechnology.

[209]  Zhong Lin Wang,et al.  Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. , 2012, Nano letters.

[210]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[211]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[212]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[213]  Kai Wu,et al.  Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. , 2012, Nanoscale.

[214]  Feng Gong,et al.  Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. , 2012, Nano letters.

[215]  Nuanyang Cui,et al.  High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates , 2011 .

[216]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[217]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[218]  Bin Liu,et al.  Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries , 2014, Nano Research.

[219]  Yi Cui,et al.  Aqueous supercapacitors on conductive cotton , 2010 .

[220]  Bin Liu,et al.  Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. , 2014, Angewandte Chemie.

[221]  Päivi Törmä,et al.  High-speed memory from carbon nanotube field-effect transistors with high-kappa gate dielectric. , 2009, Nano letters.

[222]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[223]  B. Liu,et al.  Three‐Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[224]  Jun Chen,et al.  Compact-designed supercapacitors using free-standing single-walled carbon nanotube films , 2011 .

[225]  Tae Il Lee,et al.  Low‐Temperature, Solution‐Processed and Alkali Metal Doped ZnO for High‐Performance Thin‐Film Transistors , 2012, Advanced materials.

[226]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[227]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[228]  Bo Liang,et al.  Indium oxide nanospirals made of kinked nanowires. , 2011, ACS nano.

[229]  Bin Liu,et al.  Single-crystalline metal germanate nanowire-carbon textiles as binder-free, self-supported anodes for high-performance lithium storage. , 2013, Nanoscale.

[230]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[231]  Yanhong Luo,et al.  A flexible carbon counter electrode for dye-sensitized solar cells , 2009 .

[232]  Giuseppe Gigli,et al.  A free-standing aligned-carbon-nanotube/nanocomposite foil as an efficient counter electrode for dye solar cells , 2012 .

[233]  Giorgio Sberveglieri,et al.  Solar Cells: Vertically Aligned TiO2 Nanotubes on Plastic Substrates for Flexible Solar Cells (Small 17/2011) , 2011 .

[234]  Vidhya Chakrapani,et al.  Band‐Edge Engineered Hybrid Structures for Dye‐Sensitized Solar Cells Based on SnO2 Nanowires , 2008 .

[235]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[236]  Yong Ding,et al.  Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. , 2004, Journal of the American Chemical Society.

[237]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[238]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[239]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[240]  Zhixiang Wei,et al.  Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites , 2011 .

[241]  L. Torsi,et al.  Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics , 1995, Science.

[242]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[243]  Bin Liu,et al.  Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries , 2013, Scientific Reports.

[244]  Larry Epp,et al.  Electromechanical carbon nanotube switches for high-frequency applications. , 2006, Nano letters.

[245]  Kuo-Chuan Ho,et al.  Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode , 2013 .

[246]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[247]  Xinsheng Peng,et al.  Synthesis and photoluminescence of single-crystalline In2O3 nanowires , 2002 .

[248]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[249]  Muhammad Safdar,et al.  High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In₂Te₃ nanostructures. , 2012, Nano letters.

[250]  Dmitri Golberg,et al.  Single‐Crystalline In2O3 Nanotubes Filled with In , 2003 .

[251]  Wei-Cheng Lien,et al.  Solar-Blind Photodetectors for Harsh Electronics , 2013, Scientific Reports.

[252]  D Murphy,et al.  Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. , 2001, Journal of the American Chemical Society.

[253]  Qiang Zhang,et al.  Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors , 2011 .

[254]  Yuhai Hu,et al.  Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage , 2012 .

[255]  Tianyou Zhai,et al.  Single‐Crystalline Sb2Se3 Nanowires for High‐Performance Field Emitters and Photodetectors , 2010, Advanced materials.

[256]  Kuo-Chuan Ho,et al.  Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells , 2012 .

[257]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[258]  O. Schmidt,et al.  Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. , 2013, Nano letters.

[259]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[260]  Jun Chen,et al.  Flexible free-standing carbon nanotube films for model lithium-ion batteries , 2009 .

[261]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[262]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[263]  Xinsheng Peng,et al.  Large-scale synthesis of SnO2 nanobelts , 2003 .

[264]  Kris Myny,et al.  Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags , 2006 .

[265]  Bin Liu,et al.  TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries , 2013, Scientific Reports.

[266]  Daoben Zhu,et al.  Fabrication of Low‐Dimension Nanostructures Based on Organic Conjugated Molecules , 2008 .

[267]  Song Feng,et al.  Controlled synthesis of branched SnO2 nanowhiskers , 2005 .

[268]  Tianyou Zhai,et al.  Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. , 2010, ACS nano.

[269]  Chun Li,et al.  Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. , 2010, ACS nano.

[270]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[271]  Yang-Kook Sun,et al.  Electrochemical characterization of gel polymer electrolytes prepared with porous membranes , 2001 .

[272]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[273]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[274]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[275]  Yoshiro Yamashita,et al.  Organic semiconductors for organic field-effect transistors , 2009, Science and technology of advanced materials.

[276]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[277]  Yong Liu,et al.  Direct Growth of Flexible Carbon Nanotube Electrodes , 2008 .

[278]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[279]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.