Diabatic Gates for Frequency-Tunable Superconducting Qubits.

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iswap-like and cphase gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

[1]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[2]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[3]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[4]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[5]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[6]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[7]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[8]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[9]  R. Barends,et al.  Qubit metrology of ultralow phase noise using randomized benchmarking , 2014, 1411.2613.

[10]  E. Solano,et al.  Digital quantum simulation of spin models with circuit quantum electrodynamics , 2015, 1502.06778.

[11]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[12]  Raymond Laflamme,et al.  Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit. , 2016, Physical review letters.

[13]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[14]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[15]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[16]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[17]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[18]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[19]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[20]  P. Alam ‘K’ , 2021, Composites Engineering.

[21]  Jay M. Gambetta,et al.  Cross-resonance interactions between superconducting qubits with variable detuning , 2014 .

[22]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[23]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[24]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[25]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[26]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[27]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[28]  Andrew W. Cross,et al.  Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code , 2014, 1410.6419.