Algorithmic randomness of continuous functions

We investigate notions of randomness in the space $${{\mathcal C}(2^{\mathbb N})}$$ of continuous functions on $${2^{\mathbb N}}$$. A probability measure is given and a version of the Martin-Löf test for randomness is defined. Random $${\Delta^0_2}$$ continuous functions exist, but no computable function can be random and no random function can map a computable real to a computable real. The image of a random continuous function is always a perfect set and hence uncountable. For any $${y \in 2^{\mathbb N}}$$, there exists a random continuous function F with y in the image of F. Thus the image of a random continuous function need not be a random closed set. The set of zeroes of a random continuous function is always a random closed set.

[1]  Steven M. Kautz Degrees of random sets , 1991 .

[2]  W. Fitch Random sequences. , 1983, Journal of molecular biology.

[3]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[4]  Douglas A. Cenzer,et al.  Random Continuous Functions , 2007, Electron. Notes Theor. Comput. Sci..

[5]  Douglas A. Cenzer,et al.  Random Closed Sets , 2006, CiE.

[6]  A. Nies Computability and randomness , 2009 .

[7]  Gregory J. Chaitin Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..

[8]  J. L. Doob Review: P. Lévy, Théorie de l'Addition des Variables Aléatoires , 1938 .

[9]  Benedikt Löwe,et al.  Logical Approaches to Computational Barriers: CiE 2006 , 2007, J. Log. Comput..

[10]  André Nies,et al.  Trivial Reals , 2002, CCA.

[11]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[12]  Willem L. Fouché,et al.  Arithmetical representations of Brownian motion I , 2000, Journal of Symbolic Logic.

[13]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[14]  George Barmpalias,et al.  Algorithmic Randomness of Closed Sets , 2007, J. Log. Comput..

[15]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[16]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[17]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[18]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[19]  Andrej Muchnik,et al.  Mathematical Metaphysics of Randomness , 1998, Theor. Comput. Sci..

[20]  Claus-Peter Schnorr,et al.  A unified approach to the definition of random sequences , 1971, Mathematical systems theory.

[21]  I︠U︡riĭ Leonidovich Ershov Recursive algebra, analysis and combinatorics , 1998 .

[22]  R. Mises Grundlagen der Wahrscheinlichkeitsrechnung , 1919 .

[23]  Rodney G. Downey,et al.  FIVE LECTURES ON ALGORITHMIC RANDOMNESS , 2008 .