On Douglas–Rachford operators that fail to be proximal mappings

The problem of finding a zero of the sum of two maximally monotone operators is of central importance in optimization. One successful method to find such a zero is the Douglas–Rachford algorithm which iterates a firmly nonexpansive operator constructed from the resolvents of the given monotone operators. In the context of finding minimizers of convex functions, the resolvents are actually proximal mappings. Interestingly, as pointed out by Eckstein in 1989, the Douglas–Rachford operator itself may fail to be a proximal mapping. We consider the class of symmetric linear relations that are maximally monotone and prove the striking result that the Douglas–Rachford operator is generically not a proximal mapping.

[1]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[4]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[5]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[6]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[7]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[8]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[9]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[10]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[11]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[12]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[13]  Jonathan M. Borwein,et al.  Fifty years of maximal monotonicity , 2010, Optim. Lett..

[14]  Jason Schaad Modeling the 8-queens problem and Sudoku using an algorithm based on projections onto nonconvex sets , 2010 .

[15]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[16]  Heinz H. Bauschke,et al.  On Borwein--Wiersma Decompositions of Monotone Linear Relations , 2009, SIAM J. Optim..

[17]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[18]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[19]  Heinz H. Bauschke,et al.  Firmly Nonexpansive Mappings and Maximally Monotone Operators: Correspondence and Duality , 2011, 1101.4688.

[20]  Boris S. Mordukhovich,et al.  An Easy Path to Convex Analysis and Applications , 2013, Synthesis Lectures on Mathematics & Statistics.

[21]  S. Reich,et al.  Genericity in Nonlinear Analysis , 2013 .

[22]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[23]  Karolin Papst,et al.  Techniques Of Variational Analysis , 2016 .