Exploring the evolutionary history of centrosomes

The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage.

[1]  S. Jaspersen,et al.  The budding yeast spindle pole body: structure, duplication, and function. , 2004, Annual review of cell and developmental biology.

[2]  D. Richter,et al.  The genomic and cellular foundations of animal origins. , 2013, Annual review of genetics.

[3]  D. Barr The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. , 1981, Bio Systems.

[4]  G. Gundersen,et al.  Orientation and function of the nuclear-centrosomal axis during cell migration. , 2011, Current opinion in cell biology.

[5]  S. Tsukita,et al.  Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia , 2005, Nature Cell Biology.

[6]  Keith Gull,et al.  Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells , 2006, Journal of Cell Science.

[7]  T. Cavalier-smith Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. , 2013, European journal of protistology.

[8]  H. Praetorius,et al.  Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling. , 2013, Seminars in cell & developmental biology.

[9]  G. C. Rogers,et al.  Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification , 2012, Cellular and Molecular Life Sciences.

[10]  Masaki Yoshida,et al.  Nuclearia thermophila sp. nov. (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). , 2009, European journal of protistology.

[11]  Nicholas H. Putnam,et al.  The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution , 2013, Science.

[12]  Filipe Tavares-Cadete,et al.  Stepwise evolution of the centriole-assembly pathway , 2010, Journal of Cell Science.

[13]  D. Escalier Knockout mouse models of sperm flagellum anomalies. , 2006, Human reproduction update.

[14]  E. Houliston,et al.  A Highly Conserved Poc1 Protein Characterized in Embryos of the Hydrozoan Clytia hemisphaerica: Localization and Functional Studies , 2010, PloS one.

[15]  A. Sánchez Alvarado,et al.  Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. , 2008, Cell stem cell.

[16]  M. Scott,et al.  Microtubules Enable the Planar Cell Polarity of Airway Cilia , 2012, Current Biology.

[17]  S. Tamm Development of macrociliary cells in Beroë. I. Actin bundles and centriole migration. , 1988, Journal of cell science.

[18]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[19]  B. Lang,et al.  Insights into the Origin of Metazoan Filopodia and Microvilli , 2013, Molecular biology and evolution.

[20]  Kamran Shalchian-Tabrizi,et al.  Multigene Phylogeny of Choanozoa and the Origin of Animals , 2008, PloS one.

[21]  Albert Cardona,et al.  Early embryogenesis of planaria: a cryptic larva feeding on maternal resources , 2006, Development Genes and Evolution.

[22]  M. Maldonado,et al.  Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida) , 2009, Journal of morphology.

[23]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[24]  C. Fulton,et al.  BASAL BODIES, BUT NOT CENTRIOLES, IN NAEGLERIA , 1971, The Journal of cell biology.

[25]  J. Palmer,et al.  Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Leadbeater,et al.  Cytoskeleton Structure and Composition in Choanoflagellates , 1998 .

[27]  C. Walsh The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. , 2007, European journal of cell biology.

[28]  Peter M. Letcher,et al.  A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). , 2006, Mycologia.

[29]  F. Spiegel Phylogenetic significance of the flagellar apparatus in protostelids (Eumycetozoa). , 1981, Bio Systems.

[30]  T. Cavalier-smith,et al.  Rooting the Eukaryote Tree by Using a Derived Gene Fusion , 2002, Science.

[31]  J. Kilmartin Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication , 2003, The Journal of cell biology.

[32]  J. Raff,et al.  Flies without Centrioles , 2006, Cell.

[33]  M. Powell MITOSIS IN THE AQUATIC FUNGUS RHIZOPHYDIUM SPHEROTHECA (CHYTRIDIALES) , 1980 .

[34]  J. Kilmartin Lessons from yeast: the spindle pole body and the centrosome , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  R. Gräf,et al.  Dictyostelium discoideum: a promising centrosome model system. , 1999, Biology of the cell.

[36]  W. Miller,et al.  Lack of Csk-mediated negative regulation in a unicellular SRC kinase. , 2012, Biochemistry.

[37]  Peter V. Troshin,et al.  The origin of Metazoa: a transition from temporal to spatial cell differentiation , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  M. Martindale,et al.  Reassessing embryogenesis in the Ctenophora: the inductive role of e1 micromeres in organizing ctene row formation in the 'mosaic' embryo, Mnemiopsis leidyi. , 1997, Development.

[39]  P. Gönczy Towards a molecular architecture of centriole assembly , 2012, Nature Reviews Molecular Cell Biology.

[40]  B. Yoder,et al.  The Primary Cilium as a Complex Signaling Center , 2009, Current Biology.

[41]  J. Yates,et al.  Proteomic Analysis of Isolated Chlamydomonas Centrioles Reveals Orthologs of Ciliary-Disease Genes , 2005, Current Biology.

[42]  Erich A. Nigg,et al.  The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries , 2011, Nature Cell Biology.

[43]  M. Bornens,et al.  The Centrosome in Evolution , 2005 .

[44]  Matthew W. Brown,et al.  The Revised Classification of Eukaryotes , 2012, The Journal of eukaryotic microbiology.

[45]  J. Reina,et al.  Drosophila neuroblasts retain the daughter centrosome , 2011, Nature communications.

[46]  R. Gräf Microtubule Organization in Dictyostelium , 2009 .

[47]  T. Keil Sensory cilia in arthropods. , 2012, Arthropod structure & development.

[48]  B. Byers,et al.  Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Grigory Genikhovich,et al.  Early development and axis specification in the sea anemone Nematostella vectensis. , 2007, Developmental biology.

[50]  D. Patterson The Genus Nuclearia (Sarcodina, Filosea): Species Composition and Characteristics of the Taxa , 1984 .

[51]  L. Lehmann,et al.  SAK/PLK4 Is Required for Centriole Duplication and Flagella Development , 2005, Current Biology.

[52]  D. Barr Evolution and kingdoms of organisms from the perspective of a mycologist , 1992 .

[53]  C. Fulton Cell differentiation in Naegleria gruberi. , 1977, Annual review of microbiology.

[54]  D. McLaughlin,et al.  Multiple isolations of a culturable, motile Ichthyosporean (Mesomycetozoa, Opisthokonta), Creolimax fragrantissima n. gen., n. sp., from marine invertebrate digestive tracts. , 2008, Protist.

[55]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[56]  W. Marshall Centriole asymmetry determines algal cell geometry. , 2012, Current opinion in plant biology.

[57]  Erich A. Nigg,et al.  Cep164, a novel centriole appendage protein required for primary cilium formation , 2007, The Journal of cell biology.

[58]  M. Berbee,et al.  Comparative morphology and genealogical delimitation of cryptic species of sympatric isolates of Sphaeroforma (Ichthyosporea, Opisthokonta). , 2013, Protist.

[59]  Shankar Subramaniam,et al.  Decoding Cilia Function Defining Specialized Genes Required for Compartmentalized Cilia Biogenesis , 2004, Cell.

[60]  H. Philippe,et al.  The diversity of eukaryotes and the root of the eukaryotic tree. , 2007, Advances in experimental medicine and biology.

[61]  K. Nasmyth,et al.  Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex , 2001, The EMBO journal.

[62]  B. Leander,et al.  Evolution of microtubule organizing centers across the tree of eukaryotes. , 2013, The Plant journal : for cell and molecular biology.

[63]  D. Hibberd Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus. , 1975, Journal of cell science.

[64]  M. Furuya,et al.  Cytoskeletal changes visualized by fluorescence microscopy during amoeba-to-flagellate and flagellate-to-amoeba transformations inPhysarum polycephalum , 1985, Protoplasma.

[65]  W. Marshall,et al.  Building the Centriole , 2010, Current Biology.

[66]  A. Sickmann,et al.  Identification of novel centrosomal proteins in Dictyostelium discoideum by comparative proteomic approaches. , 2006, Journal of proteome research.

[67]  J. Ahringer,et al.  Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. , 2004, Developmental cell.

[68]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[69]  Paul M. Jenkins,et al.  Olfactory cilia: our direct neuronal connection to the external world. , 2008, Current topics in developmental biology.

[70]  C. Dieckmann,et al.  Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization , 2011, The Journal of cell biology.

[71]  B. Lang,et al.  The Closest Unicellular Relatives of Animals , 2002, Current Biology.

[72]  Shiaulou Yuan,et al.  Analysis of cilia structure and function in zebrafish. , 2011, Methods in cell biology.

[73]  T. Cavalier-smith,et al.  Myosin domain evolution and the primary divergence of eukaryotes , 2005, Nature.

[74]  K. Anderson,et al.  The primary cilium: a signalling centre during vertebrate development , 2010, Nature Reviews Genetics.

[75]  Peter M. Letcher,et al.  Ultrastructural and molecular delineation of the Chytridiaceae (Chytridiales) , 2005 .

[76]  S. Baldauf,et al.  Molecular phylogeny of choanoflagellates, the sister group to Metazoa , 2008, Proceedings of the National Academy of Sciences.

[77]  S. Shi,et al.  Asymmetric centrosome inheritance maintains neural progenitors in neocortex , 2009, Nature.

[78]  T. Noda,et al.  Coordinated Ciliary Beating Requires Odf2-Mediated Polarization of Basal Bodies via Basal Feet , 2012, Cell.

[79]  C. Nielsen Six major steps in animal evolution: are we derived sponge larvae? , 2008, Evolution & development.

[80]  M. E. Hodges,et al.  Reconstructing the evolutionary history of the centriole from protein components , 2010, Journal of Cell Science.

[81]  N. Boury‐Esnault,et al.  Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera , 1999 .

[82]  S. Baldauf,et al.  The protistan origins of animals and fungi. , 2006, Molecular biology and evolution.

[83]  I. Ruiz-Trillo,et al.  Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. , 2013, Protist.

[84]  J. Caldwell,et al.  Human Cep192 Is Required for Mitotic Centrosome and Spindle Assembly , 2007, Current Biology.

[85]  M. Bornens,et al.  Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. , 2003, Molecular biology of the cell.

[86]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[87]  N. Funayama The stem cell system in demosponges: Insights into the origin of somatic stem cells , 2010, Development, growth & differentiation.

[88]  R. Gräf,et al.  Dictyostelium discoideum CenB Is a Bona Fide Centrin Essential for Nuclear Architecture and Centrosome Stability , 2009, Eukaryotic Cell.

[89]  A. Roger,et al.  Ancient origin of the integrin-mediated adhesion and signaling machinery , 2010, Proceedings of the National Academy of Sciences.

[90]  T. Avidor-Reiss,et al.  Building a centriole. , 2013, Current opinion in cell biology.

[91]  A. Khodjakov,et al.  Centriole duplication: analogue control in a digital age , 2010, Cell biology international.

[92]  D. Livingston,et al.  Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation , 2010, Proceedings of the National Academy of Sciences.

[93]  M. Bornens,et al.  Structure and duplication of the centrosome , 2007, Journal of Cell Science.

[94]  S. Tyler Development of cilia in embryos of the turbellarian Macrostomum , 1981, Hydrobiologia.

[95]  Michel Bornens,et al.  The Centrosome in Cells and Organisms , 2012, Science.

[96]  M. Riparbelli,et al.  The insect centriole: A land of discovery. , 2010, Tissue & cell.

[97]  E. Nigg Centrosome duplication: of rules and licenses. , 2007, Trends in cell biology.

[98]  S. Leys,et al.  Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan , 2007, Evolution & development.

[99]  J. Kilmartin,et al.  Localization of Core Spindle Pole Body (SPB) Components during SPB Duplication in Saccharomyces cerevisiae , 1999, The Journal of cell biology.

[100]  B. Ducommun,et al.  Microtubule cytoskeleton and morphogenesis in the amoebae of the myxomycete Physarum polycephalum , 1988, Biology of the cell.

[101]  S. Doxsey,et al.  Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. , 2004, Molecular biology of the cell.

[102]  Wallace F. Marshall,et al.  Centrosome Loss in the Evolution of Planarians , 2012, Science.

[103]  N. King,et al.  Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. , 2011, Developmental biology.

[104]  D. Mitchell,et al.  The evolution of eukaryotic cilia and flagella as motile and sensory organelles. , 2007, Advances in experimental medicine and biology.

[105]  A. Mahowald,et al.  Asymmetric Inheritance of Mother Versus Daughter Centrosome in Stem Cell Division , 2007, Science.

[106]  A. Hyman,et al.  The Mammalian SPD-2 Ortholog Cep192 Regulates Centrosome Biogenesis , 2008, Current Biology.

[107]  R. Bayliss,et al.  The primary cilium , 2014, Organogenesis.

[108]  A. Amato,et al.  Mitosis in diatoms: rediscovering an old model for cell division , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[109]  T. Cavalier-smith,et al.  Neomonada and the origin of animals and fungi. , 1998 .

[110]  H. Schatten,et al.  The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. , 2010, Seminars in cell & developmental biology.

[111]  S. Baldauf,et al.  An Alternative Root for the Eukaryote Tree of Life , 2014, Current Biology.

[112]  M. Bornens,et al.  The Respective Contributions of the Mother and Daughter Centrioles to Centrosome Activity and Behavior in Vertebrate Cells , 2000, The Journal of cell biology.

[113]  Matthew W. Brown,et al.  The Capsaspora genome reveals a complex unicellular prehistory of animals , 2013, Nature Communications.

[114]  R. Copley,et al.  Acoelomorph flatworms are deuterostomes related to Xenoturbella , 2011, Nature.

[115]  Corinne Da Silva,et al.  Phylogenomics Revives Traditional Views on Deep Animal Relationships , 2009, Current Biology.

[116]  C. Katsaros,et al.  Cytoskeleton and morphogenesis in brown algae. , 2006, Annals of botany.

[117]  R. Gräf,et al.  Identification and cell cycle-dependent localization of nine novel, genuine centrosomal components in Dictyostelium discoideum. , 2009, Cell motility and the cytoskeleton.

[118]  Manuel Maldonado,et al.  Choanoflagellates, choanocytes, and animal multicellularity , 2005 .

[119]  E. Gaino,et al.  Dissociated cells of the calcareous sponge Clathrina: a model for investigating cell adhesion and cell motility in vitro , 1999, Microscopy research and technique.

[120]  B. Lang,et al.  Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. , 2012, Molecular biology and evolution.

[121]  Clare C. Yu,et al.  Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells , 2011, The Journal of cell biology.

[122]  Peter Delves,et al.  Encyclopedia of life sciences , 2009 .

[123]  C. Fulton Intracellular regulation of cell shape and motility in Naegleria. First insights and a working hypothesis. , 1977, Journal of supramolecular structure.

[124]  J. Raff,et al.  Drosophila Spd-2 Recruits PCM to the Sperm Centriole, but Is Dispensable for Centriole Duplication , 2007, Current Biology.

[125]  J. Reina,et al.  When fate follows age: unequal centrosomes in asymmetric cell division , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[126]  R. T. Hoopen,et al.  Spindle Pole Body History Intrinsically Links Pole Identity with Asymmetric Fate in Budding Yeast , 2013, Current Biology.

[127]  B. Lang,et al.  Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support , 2009, BMC Evolutionary Biology.

[128]  The centriole cycle in the amoebae of the myxomycetePhysarum polycephalum , 1986, Protoplasma.

[129]  M. Holley The ciliary basal apparatus is adapted to the structure and mechanics of the epithelium. , 1984, Tissue & cell.

[130]  G. C. Rogers,et al.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization , 2012, Nature Cell Biology.

[131]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[132]  M. Boutros,et al.  Proteomic and functional analysis of the mitotic Drosophila centrosome , 2010, The EMBO journal.

[133]  J. Kilmartin,et al.  Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. , 1996, The EMBO journal.

[134]  E. Betzig,et al.  A Localized Wnt Signal Orients Asymmetric Stem Cell Division in Vitro , 2013, Science.

[135]  S. Karpov The flagellar apparatus structure of Apusomonas proboscidea and apusomonad relationships , 2007 .

[136]  S. Tsukita,et al.  Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains , 2013, The Journal of cell biology.

[137]  D. Biron,et al.  Extreme reduction and compaction of microsporidian genomes. , 2011, Research in microbiology.

[138]  B Franz Lang,et al.  A phylogenomic investigation into the origin of metazoa. , 2008, Molecular biology and evolution.

[139]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[140]  A. Simpson,et al.  Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. , 2006, Molecular biology and evolution.

[141]  E. Golemis,et al.  The extracellular matrix and ciliary signaling. , 2012, Current opinion in cell biology.

[142]  P. Lupetti,et al.  New insights into the cell biology of insect axonemes. , 2008, International review of cell and molecular biology.