The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery

The investigation of properties of amphiphilic block copolymers as stabilizers for non-lamellar lyotropic liquid crystalline nanoparticles represents a fundamental issue for the formation, stability and upgraded functionality of these nanosystems. The aim of this work is to use amphiphilic block copolymers, not studied before, as stabilizers of glyceryl monooleate 1-(cis-9-octadecenoyl)-rac-glycerol (GMO) colloidal dispersions. Nanosystems were prepared with the use of poly(ethylene oxide)-b-poly(lactic acid) (PEO-b-PLA) and poly(ethylene oxide)-b-poly(5-methyl-5-ethyloxycarbonyl-1,3-dioxan-2-one) (PEO-b-PMEC) block copolymers. Different GMO:polymer molar ratios lead to formulation of nanoparticles with different size and internal organization, depending on the type of hydrophobic block. Resveratrol was loaded into the nanosystems as a model hydrophobic drug. The physicochemical and morphological characteristics of the prepared nanosystems were investigated by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), fast Fourier transform (FFT) analysis and X-ray diffraction (XRD). The studies allowed the description of the lyotropic liquid crystalline nanoparticles and evaluation of impact of copolymer composition on these nanosystems. The structures formed in GMO:block copolymer colloidal dispersions were compared with those discussed previously. The investigations broaden the toolbox of polymeric stabilizers for the development of this type of hybrid polymer/lipid nanostructures.

[1]  B. Tang,et al.  Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission† , 2021, Chemical science.

[2]  A. Yaghmur,et al.  Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles , 2021, Acta pharmaceutica Sinica. B.

[3]  M. Longo,et al.  Hybrid lipid/block copolymer vesicles display broad phase coexistence region. , 2021, Biochimica et Biophysica Acta - Biomembranes.

[4]  M. M. Ghareeb,et al.  Formulation and Evaluation of Ondansetron HCl Nanoparticles for Transdermal Delivery , 2020, Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512).

[5]  L. Rodolfi,et al.  Lipids from algal biomass provide new (nonlamellar) nanovectors with high carrier potentiality for natural antioxidants. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[6]  B. Trzebicka,et al.  Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  I. Dierking,et al.  Novel Trends in Lyotropic Liquid Crystals , 2020, Crystals.

[8]  B. Trzebicka,et al.  Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli-responsive polymeric stabilizer , 2020 .

[9]  D. Tian,et al.  Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells , 2020, Cell Death & Disease.

[10]  C. Prestidge,et al.  Bacterial lipase triggers the release of antibiotics from digestible liquid crystal nanoparticles. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[11]  O. Ces,et al.  Engineering swollen cubosomes using cholesterol and anionic lipids. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[12]  A. Angelova,et al.  pH-Responsiveness of Hexosomes and Cubosomes for Combined Delivery of Brucea Javanica Oil and Doxorubicin. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[13]  P. Beales,et al.  Biodegradable hybrid block copolymer - lipid vesicles as potential drug delivery systems. , 2019, Journal of colloid and interface science.

[14]  M. Stevens,et al.  Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? , 2018, Angewandte Chemie.

[15]  M. Mahlapuu,et al.  Cubosomes for topical delivery of the antimicrobial peptide LL‐37 , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[16]  H. Badie,et al.  Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation , 2018, Drug development and industrial pharmacy.

[17]  B. Trzebicka,et al.  Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies , 2018, International journal of pharmaceutics.

[18]  A. Mishra,et al.  Resveratrol: A Double-Edged Sword in Health Benefits , 2018, Biomedicines.

[19]  Chunxi Wang,et al.  Poly(Ethylene Glycol)–Polylactide Micelles for Cancer Therapy , 2018, Front. Pharmacol..

[20]  R. Nisini,et al.  The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases , 2018, Front. Immunol..

[21]  C. Marques,et al.  Influence of a pH-sensitive polymer on the structure of monoolein cubosomes. , 2017, Soft matter.

[22]  C. Kulkarni,et al.  Self-Assembled Lipid Cubic Phase and Cubosomes for the Delivery of Aspirin as a Model Drug. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[23]  A. O. Kamel,et al.  Novel polyglycerol-dioleate based cubosomal dispersion with tailored physical characteristics for controlled delivery of ondansetron. , 2017, Colloids and surfaces. B, Biointerfaces.

[24]  W. Loh,et al.  Interactions and release of two palmitoyl peptides from phytantriol cubosomes , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[25]  Bradford A Moffat,et al.  Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. , 2017, Materials science & engineering. C, Materials for biological applications.

[26]  Henry Brem,et al.  Polylactic acid (PLA) controlled delivery carriers for biomedical applications. , 2016, Advanced drug delivery reviews.

[27]  C. Drummond,et al.  Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. , 2016, Faraday discussions.

[28]  W. Loh,et al.  Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic(®) F127 cubosomes. , 2016, Colloids and surfaces. B, Biointerfaces.

[29]  Ranjita Shegokar,et al.  Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications , 2016, Expert opinion on drug delivery.

[30]  Mehrdad Hamidi,et al.  Cubosomes: remarkable drug delivery potential. , 2016, Drug discovery today.

[31]  N. Elgindy,et al.  Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. , 2016, International journal of pharmaceutics.

[32]  S. Moghimi,et al.  Cubosomes and hexosomes as versatile platforms for drug delivery. , 2015, Therapeutic delivery.

[33]  C. Drummond,et al.  Lipid-PEG conjugates sterically stabilize and reduce the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[34]  M. Monduzzi,et al.  Docetaxel-Loaded Fluorescent Liquid-Crystalline Nanoparticles for Cancer Theranostics. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[35]  C. Stephenson,et al.  Chemistry and Biology of Resveratrol-Derived Natural Products , 2015, Chemical reviews.

[36]  Atul Kolate,et al.  PEG - a versatile conjugating ligand for drugs and drug delivery systems. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[37]  C. Drummond,et al.  Novel RAFT amphiphilic brush copolymer steric stabilisers for cubosomes: poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate). , 2014, Soft matter.

[38]  P. Ma,et al.  Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems , 2014, BioMed research international.

[39]  Holger Frey,et al.  Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. , 2014, Biomacromolecules.

[40]  L. Prodi,et al.  Cancer-cell-targeted theranostic cubosomes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[41]  Stergios Pispas,et al.  The interplay between the rate of release from polymer grafted liposomes and their fractal morphology. , 2014, International journal of pharmaceutics.

[42]  Xinsheng Peng,et al.  Nanostructed Cubosomes as Advanced Drug Delivery System , 2013 .

[43]  Stergios Pispas,et al.  DPPC:MPOx chimeric advanced Drug Delivery nano Systems (chi-aDDnSs): physicochemical and structural characterization, stability and drug release studies. , 2013, International journal of pharmaceutics.

[44]  Stergios Pispas,et al.  PEO-b-PCL–DPPC chimeric nanocarriers: self-assembly aspects in aqueous and biological media and drug incorporation , 2013 .

[45]  C. Drummond,et al.  Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions. , 2013, Journal of colloid and interface science.

[46]  C. Roberts,et al.  Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[47]  C. Drummond,et al.  High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[48]  Jianxu Li,et al.  A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-β₂₅₋₃₅-treated rats following intranasal administration. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[49]  M. Morari,et al.  Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[50]  T. Rades,et al.  Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[51]  Xia Zhao,et al.  PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. , 2011, Current drug targets.

[52]  C. Drummond,et al.  Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers , 2011 .

[53]  P. Puranik,et al.  Carbopol Polymers: A Versatile Polymer for Pharmaceutical Applications , 2010 .

[54]  A. Södergård,et al.  Industrial Production of High Molecular Weight Poly(Lactic Acid) , 2010 .

[55]  Xinsheng Peng,et al.  Design and In Vitro Evaluation of Capsaicin Transdermal Controlled Release Cubic Phase Gels , 2010, AAPS PharmSciTech.

[56]  C. Drummond,et al.  Colloidal amphiphile self-assembly particles composed of gadolinium oleate and myverol: evaluation as contrast agents for magnetic resonance imaging. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[57]  Yi Yan Yang,et al.  Organocatalytic approach to amphiphilic comb-block copolymers capable of stereocomplexation and self-assembly. , 2008, Biomacromolecules.

[58]  T. Gunnarsson,et al.  "Sponge" nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[59]  B. Boyd,et al.  Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. , 2006, International journal of pharmaceutics.

[60]  M. Adrian,et al.  Crystallography of dispersed liquid crystalline phases studied by cryo‐transmission electron microscopy , 2006, Journal of microscopy.

[61]  F. Tiberg,et al.  Self-assembled lipid superstructures: beyond vesicles and liposomes. , 2005, Nano letters.

[62]  R. Zhuo,et al.  Synthesis and properties of functional aliphatic polycarbonates , 2003 .

[63]  J. M. Harris,et al.  Effect of pegylation on pharmaceuticals , 2003, Nature Reviews Drug Discovery.

[64]  M. Nakano,et al.  Small-Angle X-ray Scattering and 13C NMR Investigation on the Internal Structure of “Cubosomes” , 2001 .

[65]  Donald Garlotta,et al.  A Literature Review of Poly(Lactic Acid) , 2001 .

[66]  M. Almgren,et al.  Submicron Particles of Reversed Lipid Phases in Water Stabilized by a Nonionic Amphiphilic Polymer , 1997 .

[67]  K. Zhu,et al.  Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate) , 1991 .

[68]  F. Davis,et al.  Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. , 1977, The Journal of biological chemistry.

[69]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[70]  C. Drummond,et al.  Steric Stabilizers for Cubic Phase Lyotropic Liquid Crystal Nanodispersions (Cubosomes) , 2015 .

[71]  H. Rietveld Line profiles of neutron powder-diffraction peaks for structure refinement , 1967 .