Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution.

[1]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[2]  D. Koshland,et al.  Comparison of experimental binding data and theoretical models in proteins containing subunits. , 1966, Biochemistry.

[3]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[4]  Conrad C. Huang,et al.  The MIDAS display system , 1988 .

[5]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[6]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[7]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[8]  J. Rothman,et al.  Positive cooperativity in the functioning of molecular chaperone GroEL. , 1992, The Journal of biological chemistry.

[9]  G. Lorimer,et al.  Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. , 1993, Biochemistry.

[10]  T. Atkinson,et al.  Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. , 1993, Biochemistry.

[11]  Yechezkel Kashi,et al.  GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms , 1994, Cell.

[12]  R. Jaenicke,et al.  Symmetric complexes of GroE chaperonins as part of the functional cycle. , 1994, Science.

[13]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[14]  M. Kessel,et al.  Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. , 1994, Science.

[15]  K. Flaherty,et al.  Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. , 1994, The Journal of biological chemistry.

[16]  Y. Kashi,et al.  Residues in chaperonin GroEL required for polypeptide binding and release , 1994, Nature.

[17]  G. Lorimer,et al.  Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. , 1994, Science.

[18]  A. Horovitz,et al.  Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196-->Ala. , 1994, Journal of molecular biology.

[19]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[20]  A. Clarke,et al.  Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. , 1995, Journal of molecular biology.

[21]  J. Weissman,et al.  Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes , 1995, Cell.

[22]  A. Horovitz,et al.  Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. , 1995, Biochemistry.

[23]  P. Adams,et al.  Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution , 1995, Nature Structural Biology.

[24]  A. Fersht,et al.  Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity. , 1996, Journal of molecular biology.

[25]  F. Hartl Molecular chaperones in cellular protein folding , 1996, Nature.

[26]  F. Hartl,et al.  Significant hydrogen exchange protection in GroEL‐bound DHFR is maintained during iterative rounds of substrate cycling , 1996, Protein science : a publication of the Protein Society.

[27]  Helen R Saibil,et al.  The Chaperonin ATPase Cycle: Mechanism of Allosteric Switching and Movements of Substrate-Binding Domains in GroEL , 1996, Cell.

[28]  A. Plückthun,et al.  beta-Lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Horovitz,et al.  Allosteric control by ATP of non-folded protein binding to GroEL. , 1996, Journal of molecular biology.

[30]  G. Lorimer,et al.  A thermodynamic coupling mechanism for GroEL-mediated unfolding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Fersht,et al.  Catalysis of Amide Proton Exchange by the Molecular Chaperones GroEL and SecB , 1996, Science.

[32]  F. Hartl,et al.  Mechanism of chaperonin action: GroES binding and release can drive GroEL‐mediated protein folding in the absence of ATP hydrolysis. , 1996, The EMBO journal.

[33]  J. Deisenhofer,et al.  The crystal structure of the GroES co-chaperonin at 2.8 Å resolution , 1996, Nature.

[34]  Zbyszek Otwinowski,et al.  The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS , 1996, Nature Structural Biology.

[35]  A. Horovitz,et al.  Inter-ring communication is disrupted in the GroEL mutant Arg13 --> Gly; Ala126 --> Val with known crystal structure. , 1996, Journal of molecular biology.

[36]  J. Weissman,et al.  Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction , 1996, Cell.

[37]  S. Mande,et al.  Structure of the Heat Shock Protein Chaperonin-10 of Mycobacterium leprae , 1996, Science.

[38]  J. Behlke,et al.  Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. , 1997, Biochemistry.

[39]  K. Wüthrich,et al.  Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR. , 1997, Journal of molecular biology.

[40]  P. Christen,et al.  The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. , 1997, Journal of molecular biology.

[41]  A. Horwich,et al.  Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL , 1997, Nature.

[42]  A. Horovitz,et al.  Structural basis of allosteric changes in the GroEL mutant Arg197→Ala , 1997, Nature Structural Biology.

[43]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[44]  J. Buchner,et al.  Catalysis of protein folding by symmetric chaperone complexes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Horowitz,et al.  ATP Hydrolysis Is Critical for Induction of Conformational Changes in GroEL That Expose Hydrophobic Surfaces* , 1997, The Journal of Biological Chemistry.

[46]  A. Fersht,et al.  A structural model for GroEL-polypeptide recognition. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Taguchi,et al.  Calorimetric Observation of a GroEL-Protein Binding Reaction with Little Contribution of Hydrophobic Interaction* , 1997, The Journal of Biological Chemistry.

[48]  A. Horwich,et al.  Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[50]  P B Sigler,et al.  GroEL/GroES: structure and function of a two-stroke folding machine. , 1998, Journal of structural biology.

[51]  A. Horwich,et al.  Structure and function in GroEL-mediated protein folding. , 1998, Annual review of biochemistry.

[52]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[53]  J. Buchner,et al.  Catalysis, commitment and encapsulation during GroE-mediated folding. , 1999, Journal of molecular biology.

[54]  K. Kuwajima,et al.  Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES. , 1999, Journal of molecular biology.

[55]  Jun Wang,et al.  A computational approach to simplifying the protein folding alphabet , 1999, Nature Structural Biology.

[56]  P. Sigler,et al.  The Crystal Structure of a GroEL/Peptide Complex Plasticity as a Basis for Substrate Diversity , 1999, Cell.

[57]  S W Englander,et al.  Chaperonin function: folding by forced unfolding. , 1999, Science.

[58]  Helen R. Saibil,et al.  GroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings , 1999, Cell.

[59]  J. Weissman,et al.  Thinking outside the box: new insights into the mechanism of GroEL-mediated protein folding , 1999, Nature Structural Biology.

[60]  A. Fersht,et al.  Stabilization of GroEL minichaperones by core and surface mutations. , 2000, Journal of molecular biology.

[61]  A. Fersht,et al.  From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones. , 2000, Journal of molecular biology.

[62]  K. Furtak,et al.  Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL , 2000, Cell.

[63]  J. Wang,et al.  Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. , 2001, Structure.

[64]  A. Horwich,et al.  Folding of malate dehydrogenase inside the GroEL–GroES cavity , 2001, Nature Structural Biology.

[65]  G. Farr,et al.  GroEL/GroES-Mediated Folding of a Protein Too Large to Be Encapsulated , 2001, Cell.

[66]  B. Gowen,et al.  ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy , 2001, Cell.

[67]  J. Wang,et al.  Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. , 2001, Structure.

[68]  A. Horovitz,et al.  Review: allostery in chaperonins. , 2001, Journal of structural biology.

[69]  D. Thirumalai,et al.  Chaperonin-mediated protein folding. , 2001, Annual review of biophysics and biomolecular structure.

[70]  B. Gowen,et al.  Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. , 2001, Journal of structural biology.

[71]  S. N. Witt,et al.  The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? , 2002, Molecular microbiology.