Scalable holistic linear regression
暂无分享,去创建一个
[1] F. Eicker. A Multivariate Central Limit Theorem for Random Linear Vector Forms , 1966 .
[2] R. R. Hocking. The analysis and selection of variables in linear regression , 1976 .
[3] Dimitris Bertsimas,et al. Characterization of the equivalence of robustification and regularization in linear and matrix regression , 2017, Eur. J. Oper. Res..
[4] A. Wald,et al. On Stochastic Limit and Order Relationships , 1943 .
[5] Ken Kobayashi,et al. BEST SUBSET SELECTION FOR ELIMINATING MULTICOLLINEARITY , 2017 .
[6] Ken Kobayashi,et al. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor , 2018, Journal of Global Optimization.
[7] R. O’Brien,et al. A Caution Regarding Rules of Thumb for Variance Inflation Factors , 2007 .
[8] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[9] Alexis Lazaridis,et al. A Note Regarding the Condition Number: The Case of Spurious and Latent Multicollinearity , 2007 .
[10] M. van Beek. An Algorithmic Approach to Linear Regression , 2018 .
[11] Dimitris Bertsimas,et al. The Trimmed Lasso: Sparsity and Robustness , 2017, 1708.04527.
[12] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[13] Taesu Cheong,et al. A mathematical programming approach for integrated multiple linear regression subset selection and validation , 2017, Pattern Recognit..
[14] F. Eicker. Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .