DNA structure, nucleosome placement and chromatin remodelling: a perspective.

A major question in chromatin biology is to what extent the sequence of DNA directly determines the genetic and chromatin organization of a eukaryotic genome? We consider two aspects to this question: the DNA sequence-specified positioning of nucleosomes and the determination of NDRs (nucleosome-depleted regions) or barriers. We argue that, in budding yeast, while DNA sequence-specified nucleosome positioning may contribute to positions flanking the regions lacking nucleosomes, DNA thermodynamic stability is a major component determinant of the genetic organization of this organism.

[1]  A. Klug,et al.  The bending of DNA in nucleosomes and its wider implications. , 1987, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[3]  Wilma K Olson,et al.  Working the kinks out of nucleosomal DNA. , 2011, Current opinion in structural biology.

[4]  G. Längst,et al.  The DNA chaperone HMGB1 facilitates ACF/CHRAC‐dependent nucleosome sliding , 2002, The EMBO journal.

[5]  A. Klug,et al.  The structure of an oligo(dA)·oligo(dT) tract and its biological implications , 1987, Nature.

[6]  Irene K. Moore,et al.  The DNA-encoded nucleosome organization of a eukaryotic genome , 2009, Nature.

[7]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[8]  C. Bustamante,et al.  Rapid spontaneous accessibility of nucleosomal DNA , 2005, Nature Structural &Molecular Biology.

[9]  A. Travers,et al.  HMG-D and histone H1 alter the local accessibility of nucleosomal DNA. , 2003, Nucleic acids research.

[10]  C. Peterson,et al.  The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes , 2011, The EMBO journal.

[11]  M. Waring,et al.  The exocyclic groups of DNA modulate the affinity and positioning of the histone octamer. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Travers,et al.  Relative affinities of DNA sequences for the histone octamer depend strongly upon both the temperature and octamer concentration. , 2005, Biochemistry.

[13]  A. Travers,et al.  A translational signature for nucleosome positioning in vivo , 2009, Nucleic acids research.

[14]  J. Thompson,et al.  DNA information: from digital code to analogue structure , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  J. Widom,et al.  Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. , 2000, Journal of molecular biology.

[16]  A. Hinnen,et al.  Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. , 1986, The EMBO journal.

[17]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[18]  Wilma K. Olson,et al.  Insights into the Sequence-Dependent Macromolecular Properties of DNA from Base-Pair Level Modeling , 2008 .

[19]  M. Frank-Kamenetskii,et al.  Stacked-unstacked equilibrium at the nick site of DNA. , 2004, Journal of molecular biology.

[20]  K. Struhl,et al.  Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo , 2009, Nature Structural &Molecular Biology.

[21]  Song Tan,et al.  Structure of RCC1 chromatin factor bound to the nucleosome core particle , 2010, Nature.

[22]  T. Richmond,et al.  DNA stretching and extreme kinking in the nucleosome core. , 2007, Journal of molecular biology.

[23]  M. Vingron,et al.  Sequence-dependent nucleosome positioning. , 2009, Journal of molecular biology.

[24]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[25]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[26]  Zhenhai Zhang,et al.  A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome , 2011, Science.

[27]  Vincent Miele,et al.  DNA physical properties determine nucleosome occupancy from yeast to fly , 2008, Nucleic acids research.

[28]  R. F. Luco,et al.  More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. , 2011, Current opinion in genetics & development.

[29]  C. Goding,et al.  The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization , 2006, Molecular microbiology.

[30]  J. Widom,et al.  Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. , 1999, Journal of molecular biology.

[31]  F. Thoma,et al.  Poly(dA).poly(dT) rich sequences are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. , 1990, Nucleic acids research.

[32]  Françoise Argoul,et al.  Nucleosome positioning by genomic excluding-energy barriers , 2009, Proceedings of the National Academy of Sciences.

[33]  Bryan J Venters,et al.  A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. , 2008, Genome research.

[34]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[35]  Tobias Straub,et al.  Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae , 2010, Nature Structural &Molecular Biology.

[36]  L. Verdone,et al.  Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation , 1996, Molecular and cellular biology.

[37]  Matthew A. Watson,et al.  The interaction of HMGB1 and linker histones occurs through their acidic and basic tails. , 2008, Journal of molecular biology.

[38]  M. Waring,et al.  The influence of DNA stiffness upon nucleosome formation. , 2004, Journal of structural biology.

[39]  V. B. Teif,et al.  Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities , 2009, Nucleic acids research.

[40]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[41]  A. Travers,et al.  High Mobility Group Proteins HMGD and HMGZ Interact Genetically With the Brahma Chromatin Remodeling Complex in Drosophila , 2006, Genetics.

[42]  T. Richmond,et al.  The structure of DNA in the nucleosome core , 2003, Nature.

[43]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[44]  Jonathan Widom,et al.  Dynamics of nucleosome invasion by DNA binding proteins. , 2011, Journal of molecular biology.

[45]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[46]  M. Visnapuu,et al.  Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition , 2009, Nature Structural &Molecular Biology.

[47]  A. Travers,et al.  HMG1 and 2, and related 'architectural' DNA-binding proteins. , 2001, Trends in biochemical sciences.

[48]  H. A. Cole,et al.  The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere , 2011, Proceedings of the National Academy of Sciences.

[49]  P. Bork,et al.  BSD: a novel domain in transcription factors and synapse-associated proteins. , 2002, Trends in biochemical sciences.

[50]  Koichi Sato,et al.  Distinct domains in HMGB1 are involved in specific intramolecular and nucleosomal interactions. , 2008, Biochemistry.

[51]  L. Stryer,et al.  Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. , 1988, Nucleic acids research.

[52]  Sabine S. Lange,et al.  High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage , 2008, Proceedings of the National Academy of Sciences.