暂无分享,去创建一个
[1] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[2] Qiang Ye,et al. Breakdown-free GMRES for Singular Systems , 2005, SIAM J. Matrix Anal. Appl..
[3] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[4] Y. Saad,et al. Iterative solution of linear systems in the 20th century , 2000 .
[5] Yimin Wei,et al. On the convergence of general stationary iterative methods for range-Hermitian singular linear systems , 2010, Numer. Linear Algebra Appl..
[6] Jörg Liesen,et al. Deflated and augmented Krylov subspace methods: Basic Facts and a Breakdown-free deflated MINRES , 2011 .
[7] Randolph E. Bank,et al. A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems , 1994, Numerical Algorithms.
[8] Martin H. Gutknecht,et al. Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences , 2000, SIAM J. Matrix Anal. Appl..
[9] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[10] Takashi Nodera,et al. Breakdown-Free ML(k)BiCGStab Algorithm for Non-Hermitian Linear Systems , 2005, ICCSA.
[11] H. Sadok,et al. A block version of BiCGSTAB for linear systems with multiple right-hand sides. , 2003 .
[12] H. V. der. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .
[13] Hebing Wu,et al. Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index , 2000 .
[14] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[15] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[16] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[17] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[18] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[19] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[20] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[21] A. Berman,et al. Cones and Iterative Methods for Best Least Squares Solutions of Linear Systems , 1974 .
[22] Daniel B. Szyld,et al. Comparison theorems for weak splittings of bounded operators , 1990 .
[23] Man-Chung Yeung,et al. An introduction to ML(n)BiCGStab , 2011, ArXiv.
[24] H. V. D. Vorst,et al. An overview of approaches for the stable computation of hybrid BiCG methods , 1995 .
[25] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[26] Daniel Boley,et al. Transpose-free multiple Lanczos and its application in Padé approximation , 2005 .
[27] E. F. Kaasschieter,et al. Preconditioned conjugate gradients for solving singular systems , 1988 .
[28] P. Sonneveld,et al. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .
[29] M. B. Van Gijzen,et al. An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties , 2010 .
[30] H. Walker,et al. GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..
[31] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[32] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[33] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[34] Y. Saad. The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .
[35] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[36] Gerard L. G. Sleijpen,et al. Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.
[37] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[38] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[39] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[40] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[41] Wayne Joubert,et al. Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equations , 1992, SIAM J. Matrix Anal. Appl..
[42] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[43] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[44] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[45] Martin H. Gutknecht,et al. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..
[46] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[47] W. Joubert. Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations , 1990 .
[48] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .