Stable recovery of low-rank matrix via nonconvex Schatten p-minimization

AbstractIn this paper, a sufficient condition is obtained to ensure the stable recovery (ɛ ≠ 0) or exact recovery (ɛ = 0) of all r-rank matrices X ∈ ℝm×n from $$b = \mathcal{A}(X) + z$$ via nonconvex Schatten p-minimization for any $$\delta _{4r} \in \left[ {\frac{{\sqrt 3 }} {2},1} \right)$$. Moreover, we determine the range of parameter p with any given δ$$\delta _{4r} \in \left[ {\frac{{\sqrt 3 }} {2},1} \right)$$. In fact, for any given $$\delta _{4r} \in \left[ {\frac{{\sqrt 3 }} {2},1} \right)$$, p ∈ (0, 2(1 − δ4r)] suffices for the stable recovery or exact recovery of all r-rank matrices.

[1]  Junhong Lin,et al.  Convergence of projected Landweber iteration for matrix rank minimization , 2014 .

[2]  Anru Zhang,et al.  Sharp RIP bound for sparse signal and low-rank matrix recovery , 2013 .

[3]  Ren-hong Wang,et al.  Robustness of orthogonal matching pursuit under restricted isometry property , 2014 .

[4]  Lie Wang,et al.  Shifting Inequality and Recovery of Sparse Signals , 2010, IEEE Transactions on Signal Processing.

[5]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[6]  Lu Liu,et al.  Exact minimum rank approximation via Schatten p-norm minimization , 2014, J. Comput. Appl. Math..

[7]  Qiyu Sun,et al.  Recovery of sparsest signals via ℓq-minimization , 2010, ArXiv.

[8]  Song Li,et al.  Convergence analysis of projected gradient descent for Schatten-p nonconvex matrix recovery , 2015 .

[9]  Song Li,et al.  Restricted p–isometry property and its application for nonconvex compressive sensing , 2012, Adv. Comput. Math..

[10]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[11]  ZhiQiang Xu Compressed sensing: a survey , 2012 .

[12]  Shimon Ullman,et al.  Uncovering shared structures in multiclass classification , 2007, ICML '07.

[13]  Huimin Wang,et al.  The bounds of restricted isometry constants for low rank matrices recovery , 2013 .

[14]  Naihua Xiu,et al.  Exact Low-Rank Matrix Recovery via Nonconvex Schatten P-Minimization , 2013, Asia Pac. J. Oper. Res..

[15]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[16]  Wei Dan Analysis of orthogonal multi-matching pursuit under restricted isometry property , 2014 .

[17]  Anru Zhang,et al.  Compressed Sensing and Affine Rank Minimization Under Restricted Isometry , 2013, IEEE Transactions on Signal Processing.

[18]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[19]  Rui Wu,et al.  The Improved Bounds of Restricted Isometry Constant for Recovery via $\ell_{p}$ -Minimization , 2013, IEEE Transactions on Information Theory.

[20]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[21]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Song Li,et al.  New bounds on the restricted isometry constant δ2k , 2011 .

[23]  Xiugang Wu,et al.  On the Optimal Compressions in the Compress-and-Forward Relay Schemes , 2010, IEEE Transactions on Information Theory.

[24]  Nguyen Viet Hung,et al.  Efficiency and Super-Efficiency of Commercial banks in Vietnam: Performances and Determinants , 2013, Asia Pac. J. Oper. Res..

[25]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[26]  Maryam Fazel,et al.  New Restricted Isometry results for noisy low-rank recovery , 2010, 2010 IEEE International Symposium on Information Theory.

[27]  S. Foucart Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .

[28]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[29]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[30]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[31]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[32]  Stephen J. Dilworth,et al.  The dimension of Euclidean subspaces of quasi-normed spaces , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  Ying Zhang,et al.  Restricted $p$ -Isometry Properties of Nonconvex Matrix Recovery , 2013, IEEE Transactions on Information Theory.

[34]  Jinming Wen,et al.  Stable Recovery of Sparse Signals via $l_p-$Minimization , 2014, ArXiv.

[35]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[36]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.