Optic disc morphology - Rethinking shape

Morphometrics, a branch of morphology, represents the study of size and shape components of biological form and their variation in the population. Assessment of optic disc morphology is essential in the diagnosis and management of many ophthalmic disorders. Much work has been performed to characterize size-related parameters of the optic disc; however, limited information is available on shape variation in the general population. In contrast to optic disc or cup sizes, which are conceptually meaningful variables with a defined unit of measurement, there are few metric constructs by which to quantify, visualize and interpret variation in optic disc or cup shape. This has significance in ophthalmic diseases with a genetic basis as recent evidence has suggested that optic disc shape may be heritable. Conventional optic disc shape measures of 'ovality' and 'form-factor' reduce a complex structure to a single number and eliminate information of potential diagnostic relevance from further analyses. The recent advent of 'geometric morphometrics', a branch of statistics that incorporates tools from geometry, biometrics and computer graphics in the quantitative analysis of biological forms, has enabled spatial relationships in shape data to be retained during analysis. The analytical methods employed in geometric morphometrics can be separated into two distinct groups: landmark-based (e.g. Procrustes analysis, thin-plate splines) and boundary outline techniques (e.g. Fourier analysis). In this review, we summarize current approaches to the study of optic disc morphology, discuss the underlying theory of geometric morphometrics within the context of analytical techniques and then explore the contemporary relevance of the subject matter to several biological fields. Finally we illustrate the potential application of geometric morphometrics to the specific problem of optic disc shape and glaucoma assessment.

[1]  Anselm Kampik,et al.  Comparison of optical coherence tomography and fundus photography for measuring the optic disc size , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[2]  L. F. Marcus,et al.  Advances in Morphometrics , 1996, NATO ASI Series.

[3]  J. Gloster Vertical ovalness of glaucomatous cupping. , 1975, The British journal of ophthalmology.

[4]  Kanti V. Mardia,et al.  A Shape-based Glaucoma Index for Tomographic Images , 2004 .

[5]  E. Chihara,et al.  Covariation of optic disc measurements and ocular parameters in the healthy eye , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  Jacques Treil,et al.  Estimation of pediatric skeletal age using geometric morphometrics and three-dimensional cranial size changes , 2007, International Journal of Legal Medicine.

[7]  Hominoid systematics: the soft evidence. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Pete E. Lestrel,et al.  Fourier Descriptors and their Applications in Biology , 2008 .

[9]  P. Mitchell,et al.  The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the Blue Mountains Eye Study , 2004, British Journal of Ophthalmology.

[10]  H. Quigley,et al.  The size and shape of the optic disc in normal human eyes. , 1990, Archives of ophthalmology.

[11]  P. O'higgins,et al.  Sexual dimorphism and population variation in the adult mandible , 2007, Forensic science, medicine, and pathology.

[12]  Christian Peter Klingenberg,et al.  Integration, modules, and development: molecules to morphology to evolution , 2004 .

[13]  Rolando González-José,et al.  Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution , 2008, Nature.

[14]  M. Schmittbuhl,et al.  Shape of the piriform aperture in Gorilla gorilla, Pan troglodytes, and modern Homo sapiens: characterization and polymorphism analysis. , 1998, American journal of physical anthropology.

[15]  M. Harju,et al.  Scanning laser ophthalmoscopy of the optic nerve head in exfoliation glaucoma and ocular hypertension with exfoliation syndrome , 2001, The British journal of ophthalmology.

[16]  Jost B Jonas,et al.  Comparison of measurements of neuroretinal rim area between confocal laser scanning tomography and planimetry of photographs , 1998, The British journal of ophthalmology.

[17]  D. Farnell,et al.  Macular translocation surgery: computer simulation of visual perception , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[18]  R A Hitchings,et al.  Quantitative evaluation of the optic nerve head in early glaucoma , 1998, The British journal of ophthalmology.

[19]  J. Jonas,et al.  Optic disk appearance in ocular hypertensive eyes. , 1994, American journal of ophthalmology.

[20]  R. Ritch,et al.  Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III , 2006, British Journal of Ophthalmology.

[21]  Sexual dimorphism and population variation in the adult mandible , 2007 .

[22]  M. Steyn,et al.  Investigation into the usability of geometric morphometric analysis in assessment of sexual dimorphism. , 2006, American journal of physical anthropology.

[23]  D. Slice,et al.  Mandibular shape in the genus Marmota (Rodentia, Sciuridae): A preliminary analysis using outlines , 2004 .

[24]  L. Sakata,et al.  Three-dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. , 2007, Investigative ophthalmology & visual science.

[25]  E. Etchells,et al.  Laser scanning tomography of the optic nerve head in ocular hypertension and glaucoma , 1997, The British journal of ophthalmology.

[26]  P. Mangin,et al.  The human mandible in lateral view: elliptical fourier descriptors of the outline and their morphological analysis. , 2002, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[27]  F. Rohlf,et al.  A revolution morphometrics. , 1993, Trends in ecology & evolution.

[28]  J. Cheverud Developmental Integration and the Evolution of Pleiotropy , 1996 .

[29]  Robert N Weinreb,et al.  Fourier analysis of optical coherence tomography and scanning laser polarimetry retinal nerve fiber layer measurements in the diagnosis of glaucoma. , 2003, Archives of ophthalmology.

[30]  Jon C. Ervin,et al.  Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study. , 2002, Ophthalmology (Rochester, Minn.).

[31]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[32]  Descriptive Information of Topographic Parameters Computed at the Optic Nerve Head with the Heidelberg Retina Tomograph , 1998, Journal of glaucoma.

[33]  R. Beck,et al.  Optic disc structure in anterior ischemic optic neuropathy. , 1984, Ophthalmology.

[34]  R V North,et al.  Digital imaging of the optic nerve head: monoscopic and stereoscopic analysis , 2005, British Journal of Ophthalmology.

[35]  S. Drance,et al.  The area of the neuroretinal rim of the optic nerve in normal eyes. , 1987, American journal of ophthalmology.

[36]  C. Zollikofer,et al.  Neanderthal cranial ontogeny and its implications for late hominid diversity , 2001, Nature.

[37]  J. Jonas,et al.  Ophthalmoscopic measurement of the optic disc. , 1995, Ophthalmology.

[38]  J. Jonas,et al.  Optic disc shape, corneal astigmatism, and amblyopia. , 1997, Ophthalmology.

[39]  W. Jungers,et al.  Shape, relative size, and size‐adjustments in morphometrics , 1995 .

[40]  J. Jonas,et al.  Histomorphometry of the human optic nerve. , 1990, Investigative ophthalmology & visual science.

[41]  G. Wollstein,et al.  Comparison of parameters from Heidelberg Retina Tomographs 2 and 3. , 2008, Ophthalmology.

[42]  J. Jonas,et al.  Glaucomatous optic nerve atrophy in small discs with low cup-to-disc ratios. , 1990, Ophthalmology.

[43]  R. Bourne,et al.  Agreement among 3 optical imaging methods for the assessment of optic disc topography. , 2005, Ophthalmology.

[44]  P. Lestrel Method for analyzing complex two‐dimensional forms: Elliptical Fourier functions , 1989, American journal of human biology : the official journal of the Human Biology Council.

[45]  D'arcy W. Thompson On growth and form i , 1943 .

[46]  Norman MacLeod,et al.  Generalizing and extending the eigenshape method of shape space visualization and analysis , 1999, Paleobiology.

[47]  A. F. Spencer,et al.  Optic disc measurement: a comparison of indirect ophthalmoscopic methods. , 1995, The British journal of ophthalmology.

[48]  Andrew C. Ah-Seng,et al.  Canalization and developmental stability in the Brachyrrhine mouse , 2006, Journal of anatomy.

[49]  J. Jonas,et al.  Ranking of optic disc variables for detection of glaucomatous optic nerve damage. , 2000, Investigative ophthalmology & visual science.

[50]  S. Lele,et al.  Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. , 1991, American journal of physical anthropology.

[51]  J. Kieser,et al.  The Uniqueness of the Human Anterior Dentition: A Geometric Morphometric Analysis , 2007, Journal of forensic sciences.

[52]  F. James Rohlf,et al.  Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates , 1986 .

[53]  Douglas F. Williams,et al.  Fourier analysis of test shape of planktonic foraminifera , 1981, Nature.

[54]  Edward A Essock,et al.  Application of Shape-based Analysis Methods to OCT Retinal Nerve Fiber Layer Data in Glaucoma , 2007, Journal of glaucoma.

[55]  P. O’Higgins,et al.  Post-natal ontogeny of the mandible and ventral cranium in Marmota species (Rodentia, Sciuridae): allometry and phylogeny , 2005, Zoomorphology.

[56]  P. Artes,et al.  Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. , 2006, Investigative ophthalmology & visual science.

[57]  R. T. Hart,et al.  The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage , 2005, Progress in Retinal and Eye Research.

[58]  J. Jonas,et al.  Shape of the neuroretinal rim and its correlations with ocular and general parameters in adult chinese: the beijing eye study. , 2007, American journal of ophthalmology.

[59]  F. Jónasson,et al.  Increased disk size in glaucomatous eyes vs normal eyes in the Reykjavik eye study. , 2003, American journal of ophthalmology.

[60]  J. Endler,et al.  The Relative Success of Some Methods for Measuring and Describing the Shape of Complex Objects , 1998 .

[61]  C. Klingenberg,et al.  Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. , 2001, Genetics.

[62]  A. Hofman,et al.  Determinants of optic disc characteristics in a general population: The Rotterdam Study. , 1999, Ophthalmology.

[63]  Fred L. Bookstein,et al.  Corpus Callosum Shape and Neuropsychological Deficits in Adult Males with Heavy Fetal Alcohol Exposure , 2002, NeuroImage.

[64]  H. Sheets,et al.  A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki , 2004 .

[65]  P. O'higgins,et al.  determination of sex in south african blacks by discriminant function analysis of mandibular linear dimensions , 2006, Forensic science, medicine, and pathology.

[66]  F. Rohlf,et al.  Geometric morphometrics: Ten years of progress following the ‘revolution’ , 2004 .

[67]  J. Caprioli,et al.  Detection of structural damage from glaucoma with confocal laser image analysis. , 1996, Investigative ophthalmology & visual science.

[68]  R. Thorington,et al.  Evolutionary acceleration in the most endangered mammal of Canada: speciation and divergence in the Vancouver Island marmot (Rodentia, Sciuridae) , 2007, Journal of evolutionary biology.

[69]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[70]  M Corti,et al.  Geometric morphometrics: An extension of the revolution. , 1993, Trends in ecology & evolution.

[71]  V. Bernal,et al.  Differences between sliding semi‐landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation , 2006, Journal of anatomy.

[72]  F J Rohlf,et al.  Statistical power comparisons among alternative morphometric methods. , 2000, American journal of physical anthropology.

[73]  P. D. Polly Variability in mammalian dentitions: size-related bias in the coefficient of variation , 1998, Biological Journal of the Linnean Society.

[74]  Jost B. Jonas,et al.  Optic disc morphometry in chronic primary open-angle glaucoma , 1988, Graefe's Archive for Clinical and Experimental Ophthalmology.

[75]  Stephen R. Frost,et al.  Neanderthal taxonomy reconsidered: implications of 3D primate models of intra- and interspecific differences. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Christian Peter Klingenberg,et al.  Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. , 2004, Genetics.

[77]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[78]  F. James Rohlf,et al.  Geometric morphometrics: Ten years of progress following the ‘revolution’ , 2004 .

[79]  N. Swindale,et al.  Automated analysis of normal and glaucomatous optic nerve head topography images. , 2000, Investigative ophthalmology & visual science.

[80]  F. James Rohlf,et al.  A geometric morphometric assessment of change in midline brain structural shape following a first episode of schizophrenia , 2000, Biological Psychiatry.

[81]  D. Mackey,et al.  Screening for glaucomatous disc changes prior to diagnosis of glaucoma in myocilin pedigrees. , 2007, Archives of ophthalmology.

[82]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Robin J. Hennessy,et al.  3D morphometrics of craniofacial dysmorphology reveals sex-specific asymmetries in schizophrenia , 2004, Schizophrenia Research.

[84]  B C Chauhan,et al.  Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. , 2001, Archives of ophthalmology.

[85]  S. K. Seah,et al.  Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. , 2005, American journal of ophthalmology.

[86]  F. James Rohlf On the use of shape spaces to compare morphometric methods , 2000 .

[87]  W. Jungers,et al.  Elliptical fourier analysis of symphyseal shape in great ape mandibles. , 2000, Journal of human evolution.

[88]  A. Ferreras,et al.  Discriminating between normal and glaucoma-damaged eyes with the Heidelberg Retina Tomograph 3. , 2008, Ophthalmology.

[89]  M. Matsumura,et al.  A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma, and ocular hypertension , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[90]  Vii Avenue Discrimination of glaucomatous optic neuropathy by digital stereoscopic analysis , 2005 .

[91]  Johnny A. Waters,et al.  Quantification of shape by use of Fourier analysis; the Mississippian blastoid genus Pentremites , 1977 .

[92]  J. Downs,et al.  3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. , 2007, Investigative ophthalmology & visual science.

[93]  Ronnie George,et al.  Neural rim characteristics of healthy South Indians: the Chennai Glaucoma Study. , 2008, Investigative ophthalmology & visual science.

[94]  J. Jonas,et al.  Ophthalmoscopic evaluation of the optic nerve head. , 1999, Survey of ophthalmology.

[95]  C. R. Ethier,et al.  Factors influencing optic nerve head biomechanics. , 2005, Investigative ophthalmology & visual science.

[96]  R. T. Hart,et al.  Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. , 2004, Investigative ophthalmology & visual science.

[97]  Paul O'higgins Fourier Descriptors and their Applications in Biology: Methodological issues in the description of forms , 1997 .

[98]  F J Rohlf,et al.  On applications of geometric morphometrics to studies of ontogeny and phylogeny. , 1998, Systematic biology.

[99]  F. Bookstein,et al.  Eigenshape Analysis of Left Ventricular Outlines from Contrast Ventriculograms , 1996 .

[100]  P. O'higgins,et al.  Mandibular morphology as an indicator of human subadult age: geometric morphometric approaches , 2008, Forensic science, medicine, and pathology.

[101]  Fred L. Bookstein,et al.  Spatial relationships of neuroanatomic landmarks in schizophrenia , 1995, Schizophrenia Research.

[102]  P. David Polly,et al.  Adaptive Zones and the Pinniped Ankle: A Three-Dimensional Quantitative Analysis of Carnivoran Tarsal Evolution , 2008 .

[103]  S. K. Seah,et al.  The morphology of the optic nerve head in the Singaporean Chinese population (the Tanjong Pagar study): part 1—optic nerve head morphology , 2008, British Journal of Ophthalmology.

[104]  Christian Peter Klingenberg,et al.  Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. , 2002, Gene.

[105]  Jost B Jonas,et al.  Neuroretinal rim width ratios in morphological glaucoma diagnosis , 1998, The British journal of ophthalmology.

[106]  W. Atchley,et al.  A MODEL FOR DEVELOPMENT AND EVOLUTION OF COMPLEX MORPHOLOGICAL STRUCTURES , 1991, Biological reviews of the Cambridge Philosophical Society.

[107]  J. Jonas,et al.  Size of the neuroretinal rim and optic cup and their correlations with ocular and general parameters in adult Chinese: the Beijing eye study , 2007, British Journal of Ophthalmology.

[108]  J. Moreno-Montañés,et al.  Glaucoma probability score vs Moorfields classification in normal, ocular hypertensive, and glaucomatous eyes. , 2008, American journal of ophthalmology.

[109]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[110]  Joan T. Richtsmeier,et al.  A parametric bootstrap approach to the detection of phylogenetic signals in landmark data , 2001 .

[111]  J. Jonas,et al.  Optic disc morphology in south India: the Vellore Eye Study , 2003, The British journal of ophthalmology.

[112]  P. Gunz,et al.  Geometric Morphometrics , 2019, Archaeological Science.

[113]  N. Martin,et al.  Genetic dissection of myopia: evidence for linkage of ocular axial length to chromosome 5q. , 2008, Ophthalmology.

[114]  P. O'higgins,et al.  Sexual Dimorphism in the Subadult Mandible: Quantification Using Geometric Morphometrics * , 2007, Journal of forensic sciences.

[115]  A. Cardini,et al.  Tempo and mode of evolutionary divergence in modern and Holocene Vancouver Island marmots (Marmota vancouverensis) (Mammalia, Rodentia) , 2009 .

[116]  B. Hallgrímsson,et al.  The brachymorph mouse and the developmental‐genetic basis for canalization and morphological integration , 2006, Evolution & development.

[117]  Charles R. Giardina,et al.  Elliptic Fourier features of a closed contour , 1982, Comput. Graph. Image Process..

[118]  Assessment of optic nerve head topographic parameters with a confocal scanning laser ophthalmoscope , 2004, Clinical & experimental ophthalmology.

[119]  S. Lele,et al.  The promise of geometric morphometrics. , 2002, American journal of physical anthropology.

[120]  H. Zaher,et al.  Application of landmark morphometrics to skulls representing the orders of living mammals , 2000 .

[121]  Jost B. Jonas,et al.  Variability of the real dimensions of normal human optic discs , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[122]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[123]  Ian A Sigal,et al.  Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties , 2009, Biomechanics and modeling in mechanobiology.

[124]  A. Cardini,et al.  Yellow-bellied marmots (Marmota flaviventris) 'in the shape space' (Rodentia, Sciuridae): sexual dimorphism, growth and allometry of the mandible , 2003, Zoomorphology.

[125]  J B Jonas,et al.  Is the nasal optic disc sector important for morphometric glaucoma diagnosis? , 2002, The British journal of ophthalmology.

[126]  J. Jonas,et al.  Optic disk size in chronic glaucoma: the Beijing eye study. , 2006, American journal of ophthalmology.

[127]  Katherine E. Willmore,et al.  Craniofacial variability and modularity in macaques and mice. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[128]  Robert Ritch,et al.  The ISNT rule and differentiation of normal from glaucomatous eyes. , 2006, Archives of ophthalmology.

[129]  R. T. Hart,et al.  Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. , 2003, Investigative ophthalmology & visual science.

[130]  Gadi Wollstein,et al.  Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. , 2003, American journal of ophthalmology.

[131]  J. Jonas,et al.  Size of the optic nerve scleral canal and comparison with intravital determination of optic disc dimensions , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[132]  H. Numabe [Optic disk]. , 2001, Ryōikibetsu shōkōgun shirīzu.

[133]  Inter-observer agreement in clinical optic disc measurement using a modified 60 D lens , 1997, Eye.

[134]  J. Jonas,et al.  Pattern of glaucomatous neuroretinal rim loss. , 1993, Ophthalmology.

[135]  Robin J. Hennessy,et al.  3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis: initial application to sexual dimorphism , 2002, Biological Psychiatry.

[136]  A. Rosas,et al.  Facial ontogeny in Neanderthals and modern humans , 2007, Proceedings of the Royal Society B: Biological Sciences.

[137]  S M Drance,et al.  ROC analysis of Heidelberg Retina Tomograph optic disc shape measures in glaucoma. , 1997, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[138]  B. Hall,et al.  Evo-Devo: evolutionary developmental mechanisms. , 2003, The International journal of developmental biology.

[139]  J. Arsuaga,et al.  Hominin lower second premolar morphology: evolutionary inferences through geometric morphometric analysis. , 2006, Journal of human evolution.

[140]  F Taroni,et al.  Quantification of the shape of handwritten characters: a step to objective discrimination between writers based on the study of the capital character O. , 2005, Forensic science international.

[141]  Ian A Sigal,et al.  Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry , 2009, Biomechanics and modeling in mechanobiology.

[142]  P. O’Higgins The study of morphological variation in the hominid fossil record: biology, landmarks and geometry , 2000, Journal of anatomy.

[143]  R A Hitchings,et al.  Aging changes of the optic nerve head in relation to open angle glaucoma , 1997, The British journal of ophthalmology.

[144]  A. Ferreras,et al.  Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: glaucoma probability score versus Moorfields regression analysis. , 2007, Ophthalmology.

[145]  J. M. Lynch,et al.  Morphometrics and hominoid phylogeny: Support for a chimpanzee-human clade and differentiation among great ape subspecies. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[146]  J. Waddington,et al.  Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral–craniofacial morphogenesis and cognitive function , 2005, Journal of anatomy.

[147]  H. Littmann [Determination of the real size of an object on the fundus of the living eye]. , 1982, Klinische Monatsblatter fur Augenheilkunde.

[148]  F. Bookstein Landmark methods for forms without landmarks , 1996 .

[149]  S. Lele,et al.  Some comments on coordinate-free and scale-invariant methods in morphometrics. , 1991, American journal of physical anthropology.

[150]  R. Thorington,et al.  POSTNATAL ONTOGENY OF MARMOT (RODENTIA, SCIURIDAE) CRANIA: ALLOMETRIC TRAJECTORIES AND SPECIES DIVERGENCE , 2006 .

[151]  Biomicroscopic measurement of the optic disc with a high-power positive lens. , 2001, Investigative ophthalmology & visual science.

[152]  J. Jonas,et al.  Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. , 1988, Investigative ophthalmology & visual science.

[153]  Peter A Mossey,et al.  Size and shape measurement in contemporary cephalometrics. , 2003, European journal of orthodontics.

[154]  Miriam Leah Zelditch,et al.  ONTOGENY OF INTEGRATED SKULL GROWTH IN THE COTTON RAT SIGMODON FULVIVENTER , 1992, Evolution; international journal of organic evolution.

[155]  L. Rossetti,et al.  Exploring the Heidelberg Retinal Tomograph 3 diagnostic accuracy across disc sizes and glaucoma stages: a multicenter study. , 2008, Ophthalmology.

[156]  L. Sakata,et al.  3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. , 2007, Investigative Ophthalmology and Visual Science.

[157]  C. R. Ethier,et al.  Finite element modeling of optic nerve head biomechanics. , 2004, Investigative ophthalmology & visual science.

[158]  Robert N Weinreb,et al.  Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma. , 2008, Investigative ophthalmology & visual science.

[159]  P O'Higgins,et al.  Morphometrics and phylogenetics: principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. , 2011, Journal of human evolution.

[160]  Robert N Weinreb,et al.  The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. , 2007, Investigative ophthalmology & visual science.

[161]  A. Walker,et al.  Mandibular Symphysis of Large-Bodied Hominoids , 2005, Human biology.

[162]  J. Jonas,et al.  Shape of the neuroretinal rim and position of the central retinal vessels in glaucoma. , 1994, The British journal of ophthalmology.

[163]  P. O'higgins Ontogeny and phylogeny: morphometric approaches to the study of skeletal growth and evolution , 1999 .

[164]  P. Mitchell,et al.  Optic disk size in open-angle glaucoma: the Blue Mountains Eye Study. , 1999, American journal of ophthalmology.

[165]  R. T. Hart,et al.  The optic nerve head as a biomechanical structure: initial finite element modeling. , 2000, Investigative ophthalmology & visual science.

[166]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[167]  J. Jonas,et al.  Correlation of the optic disc size to glaucoma susceptibility. , 1991, Ophthalmology.

[168]  Edward A Essock,et al.  Predicting Visual Field Loss in Ocular Hypertensive Patients Using Wavelet-Fourier Analysis of GDx Scanning Laser Polarimetry , 2004, Optometry and vision science : official publication of the American Academy of Optometry.

[169]  T Dada,et al.  Is the ISNT rule violated in early primary open-angle glaucoma—a scanning laser tomography study , 2008, Eye.

[170]  Jost B. Jonas,et al.  Optic disc shape in glaucoma , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[171]  Robert D. Fechtner,et al.  Fourier Analysis of Nerve Fiber Layer Measurements From Scanning Laser Polarimetry in Glaucoma: Emphasizing Shape Characteristics of the ‘Double‐Hump’ Pattern , 2000, Journal of glaucoma.

[172]  F. Bookstein,et al.  Geometric morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-affected brain. , 2001, Teratology.

[173]  Nathan M. Young,et al.  Evolution of covariance in the mammalian skull. , 2007, Novartis Foundation symposium.

[174]  J. Selhorst,et al.  The Optic Nerve , 2009, Seminars in neurology.

[175]  J. Crowston,et al.  Optic disk size and glaucoma. , 2007, Survey of ophthalmology.

[176]  W. Budde,et al.  Optic disc morphometry with optical coherence tomography: comparison with planimetry of fundus photographs and influence of parapapillary atrophy and pigmentary conus. , 2005, Indian journal of ophthalmology.

[177]  Catherine M. Green,et al.  Heritable features of the optic disc: a novel twin method for determining genetic significance. , 2007, Investigative ophthalmology & visual science.

[178]  A. Ferreras,et al.  Diagnostic ability of the Heidelberg Retina Tomograph 3 for glaucoma. , 2008, American journal of ophthalmology.

[179]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[180]  M. Pigliucci Phenotypic integration: studying the ecology and evolution of complex phenotypes , 2003 .

[181]  A. Coleman,et al.  Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.

[182]  M. Dagosto,et al.  Mammalian evolutionary morphology : a tribute to Frederick S. Szalay , 2008 .

[183]  C. Klingenberg,et al.  Distances and directions in multidimensional shape spaces: implications for morphometric applications. , 2005, Systematic biology.

[184]  Dennis E. Slice,et al.  Modern Morphometrics In Physical Anthropology , 2005 .

[185]  A. Cardini,et al.  Mandibular Morphology as an Indicator of Human Subadult Age: Interlandmark Approaches * , 2007, Journal of forensic sciences.

[186]  P. S. Lee,et al.  The morphology of the optic nerve head in two representative South–East Asian populations , 2004 .

[187]  L. Sakata,et al.  Comparison of diagnostic accuracy of Heidelberg Retina Tomograph II and Heidelberg Retina Tomograph 3 to discriminate glaucomatous and nonglaucomatous eyes. , 2007, American journal of ophthalmology.

[188]  G. Wagner HOMOLOGUES, NATURAL KINDS AND THE EVOLUTION OF MODULARITY , 1996 .

[189]  M. Iester,et al.  Three-dimensional optic nerve head algorithm for the detection of glaucomatous damage , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[190]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[191]  J. Jonas,et al.  Optic nerve head drusen associated with abnormally small optic discs , 1987, International Ophthalmology.

[192]  Catherine M. Green,et al.  How significant is a family history of glaucoma? Experience from the Glaucoma Inheritance Study in Tasmania , 2007, Clinical & experimental ophthalmology.

[193]  M. Schmittbuhl,et al.  Symphyseal shape variation in extant and fossil hominoids, and the symphysis of Australopithecus bahrelghazali. , 2008, Journal of human evolution.

[194]  A. Thompson,et al.  Quantification of optic nerve head topography in optic neuritis: a pilot study , 2006, British Journal of Ophthalmology.