Aggregation Operators of Interval‐Valued 2‐Tuple Linguistic Information

The group decision‐making problem with linguistic information evaluation values of decision makers are used based on 2‐tuple interval‐valued. Operational laws on interval value 2‐tuple are introduced. On the basis of these laws, new aggregation operators are introduced by using the Choquet integral. A multiple attribute decision‐making method based on these aggregation operators is proposed. An example is given to illustrate the efficiency, practicality, and feasibility of our method.

[1]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process for the Choquet Integral , 2013, EMO.

[2]  Yin-Feng Xu,et al.  Linguistic multiperson decision making based on the use of multiple preference relations , 2009, Fuzzy Sets Syst..

[3]  Ta-Chun Wen,et al.  A novel efficient approach for DFMEA combining 2-tuple and the OWA operator , 2010, Expert Syst. Appl..

[4]  Xiaohong Chen,et al.  Induced choquet ordered averaging operator and its application to group decision making , 2010, Int. J. Intell. Syst..

[5]  Wei Gui-wu Two-tuple linguistic multiple attribute group decision making with incomplete attribute weight information , 2008 .

[6]  Tabasam Rashid,et al.  TOPSIS for Hesitant Fuzzy Linguistic Term Sets , 2013, Int. J. Intell. Syst..

[7]  Cengiz Kahraman,et al.  Multi-criteria warehouse location selection using Choquet integral , 2010, Expert Syst. Appl..

[8]  Francisco Herrera,et al.  A 2-tuple fuzzy linguistic representation model for computing with words , 2000, IEEE Trans. Fuzzy Syst..

[9]  Z. S. Xu,et al.  Correlated Linguistic Information Aggregation , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  Hsiang-Chuan Liu,et al.  Applying a complexity-based Choquet integral to evaluate students' performance , 2009, Expert Syst. Appl..

[11]  Wang Xin Method for group decision making based on two-tuple linguistic information processing , 2003 .

[12]  Zheng Pei,et al.  Fuzzy risk analysis based on linguistic aggregation operators , 2011 .

[13]  Ronald R. Yager,et al.  Induced aggregation operators , 2003, Fuzzy Sets Syst..

[14]  E. Ertugrul Karsak,et al.  A fuzzy MCDM approach for personnel selection , 2010, Expert Syst. Appl..

[15]  Christophe Labreuche,et al.  The Choquet integral for the aggregation of interval scales in multicriteria decision making , 2003, Fuzzy Sets Syst..

[16]  Zeshui Xu,et al.  Choquet integrals of weighted intuitionistic fuzzy information , 2010, Inf. Sci..

[17]  Yi-Chung Hu,et al.  Classification performance evaluation of single-layer perceptron with Choquet integral-based TOPSIS , 2008, Applied Intelligence.

[18]  Mohamed Benrejeb,et al.  Choquet integral for criteria aggregation in the flexible job-shop scheduling problems , 2008, Math. Comput. Simul..

[19]  Chunqiao Tan,et al.  A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS , 2011, Expert Syst. Appl..

[20]  Wen-Pai Wang,et al.  Evaluating new product development performance by fuzzy linguistic computing , 2009, Expert Syst. Appl..

[21]  Zhang Yao An Approach to Linguistic Multiple Attribute Decision Making with Linguistic Information Based on ELOWA Operator , 2006 .

[22]  Jin-Hsien Wang,et al.  A new version of 2-tuple fuzzy linguistic representation model for computing with words , 2006, IEEE Trans. Fuzzy Syst..

[23]  Enrique Herrera-Viedma,et al.  A quality evaluation methodology for health-related websites based on a 2-tuple fuzzy linguistic approach , 2010, Soft Comput..

[24]  Xiaohong Chen,et al.  Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making , 2010, Expert Syst. Appl..

[25]  Yin-Feng Xu,et al.  Computing the Numerical Scale of the Linguistic Term Set for the 2-Tuple Fuzzy Linguistic Representation Model , 2009, IEEE Transactions on Fuzzy Systems.

[26]  Wei Yang,et al.  New aggregation operators based on the Choquet integral and 2-tuple linguistic information , 2012, Expert Syst. Appl..

[27]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[28]  Christophe Labreuche,et al.  Generalized Choquet-like aggregation functions for handling bipolar scales , 2006, Eur. J. Oper. Res..

[29]  Francisco Herrera,et al.  A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Luis Martínez-López,et al.  Sensory evaluation based on linguistic decision analysis , 2007, Int. J. Approx. Reason..

[31]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[32]  Peter P. Wakker,et al.  Additive Representations of Preferences , 1989 .

[33]  Z. S. Xu,et al.  Eowa And Eowg Operators For Aggregating Linguistic Labels Based On Linguistic Preference Relations , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[34]  Wen-Pai Wang,et al.  A fuzzy linguistic computing approach to supplier evaluation , 2010 .

[35]  Gui-Wu Wei,et al.  A method for multiple attribute group decision making based on the ET-WG and ET-OWG operators with 2-tuple linguistic information , 2010, Expert Syst. Appl..

[36]  Gui-Wu Wei,et al.  Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information , 2010, Knowledge and Information Systems.

[37]  Francisco Herrera,et al.  A fusion approach for managing multi-granularity linguistic term sets in decision making , 2000, Fuzzy Sets Syst..

[38]  Fan Zhi-ping Property analysis of the aggregation operators for two-tuple linguistic information , 2003 .

[39]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[40]  Patrick Meyer,et al.  On the use of the Choquet integral with fuzzy numbers in multiple criteria decision support , 2006, Fuzzy Sets Syst..

[41]  Da Ruan,et al.  Choquet integral based aggregation approach to software development risk assessment , 2010, Inf. Sci..

[42]  Tabasam Rashid,et al.  A democratic preference aggregation model , 2013 .

[43]  Salvatore Greco,et al.  Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..

[44]  Yin-Feng Xu,et al.  The OWA-based consensus operator under linguistic representation models using position indexes , 2010, Eur. J. Oper. Res..

[45]  Ronald R. Yager,et al.  OWA aggregation of intuitionistic fuzzy sets , 2009, Int. J. Gen. Syst..

[46]  Lawrence W. Lan,et al.  Selection of optimal supplier in supply chain management strategy with analytic network process and choquet integral , 2009, Comput. Ind. Eng..

[47]  Shih-Yuan Wang,et al.  Applying 2-Tuple Multigranularity Linguistic Variables to Determine the Supply Performance in Dynamic Environment Based on Product-Oriented Strategy , 2008, IEEE Transactions on Fuzzy Systems.

[48]  G. Choquet Theory of capacities , 1954 .

[49]  Francisco Herrera,et al.  An Approach for Combining Linguistic and Numerical Information Based on the 2-Tuple Fuzzy Linguistic Representation Model in Decision-Making , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[50]  Luis Martínez-López,et al.  A Consensus Support System Model for Group Decision-Making Problems With Multigranular Linguistic Preference Relations , 2005, IEEE Transactions on Fuzzy Systems.

[51]  Guiwu Wei,et al.  Models for Multiple Attribute Group Decision Making with 2-Tuple Linguistic Assessment Information , 2010, Int. J. Comput. Intell. Syst..

[52]  Ismat Beg,et al.  Multi-criteria trapezoidal valued intuitionistic fuzzy decision making with Choquet integral based TOPSIS , 2014 .

[53]  Wei Yu Method for 2-tuple linguistic group decision making based on the ET-WG and ET-OWG operators , 2009 .

[54]  Gwo-Hshiung Tzeng,et al.  Hierarchical MADM with fuzzy integral for evaluating enterprise intranet web sites , 2005, Inf. Sci..