Going beyond SiO2 and AlPO4: Stabilisation of “strained” hypothetical frameworks in exotic compositions

We use periodic density functional calculations to examine the effect of chemical composition on the energy landscape of TX2 zeotype materials. Our work demonstrates that when going from SiO2 to more exotic chemical compositions (e.g. SiS2 and GeS2) the energy landscape changes dramatically and frameworks we would deem unfeasible as silica suddenly correspond to low energy structures. The successful synthesis of the supertetrahedral framework RWY as a gallium germanium sulphide is a clear illustration of the latter.

[1]  Igor Rivin,et al.  Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .

[2]  Michael W. Deem,et al.  Toward a Database of Hypothetical Zeolite Structures , 2006 .

[3]  S. Wells,et al.  Reverse Monte Carlo with geometric analysis – RMC+GA , 2004 .

[4]  Gérard Férey,et al.  Novel inorganic frameworks constructed from double-four-ring (D4R) units: computational design, structures, and lattice energies of silicate, aluminophosphate, and gallophosphate candidates. , 2002, Journal of the American Chemical Society.

[5]  M. Catti First-principles study of the orthorhombic mechanism for the B3/B1 high-pressure phase transition of ZnS , 2002 .

[6]  J. Gale,et al.  ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes , 2001 .

[7]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[8]  Michael Treacy,et al.  Enumeration of periodic tetrahedral frameworks , 1997 .

[9]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[10]  Jacek Klinowski,et al.  Systematic enumeration of crystalline networks , 1999, Nature.

[11]  H. S. Young,et al.  Germanium and Silicon Disulfides: Structure and Synthesis , 1965, Science.

[12]  M. D. Foster,et al.  Chemical evaluation of hypothetical uninodal zeolites. , 2004, Journal of the American Chemical Society.

[13]  Martijn A Zwijnenburg,et al.  On the performance of DFT and interatomic potentials in predicting the energetics of (three-membered ring-containing) siliceous materials. , 2007, The journal of physical chemistry. B.

[14]  S. Bromley,et al.  Magic silica clusters as nanoscale building units for super-(tris)tetrahedral materials , 2006 .

[15]  Mark E. Davis,et al.  Thermochemistry of Pure-Silica Zeolites , 2000 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  S. Wells,et al.  Tetrahedral distortion and energetic packing penalty in "zeolite" frameworks: linked phenomena? , 2005, The journal of physical chemistry. B.

[18]  A. Corma,et al.  Modifying the Catalytic Activity of Ti-Zeolites by Isomorphic Substitution of Si by Ge Atoms. A Periodic Quantum-Chemical Study , 2000 .

[19]  Jacek Klinowski,et al.  Chemically feasible hypothetical crystalline networks , 2004, Nature materials.

[20]  Xianhui Bu,et al.  Microporous and Photoluminescent Chalcogenide Zeolite Analogs , 2002, Science.

[21]  B. Krebs,et al.  Silicon disulphide and silicon diselenide: a reinvestigation , 1982 .

[22]  M. D. Foster,et al.  Hypothetical binodal zeolitic frameworks. , 2005, Acta crystallographica. Section B, Structural science.

[23]  M. Zwijnenburg,et al.  Dramatic differences between the energy landscapes of SiO(2) and SiS(2) zeotype materials. , 2007, Journal of the American Chemical Society.

[24]  R. Dovesi,et al.  Periodic ab initio study of the oxidizing sites in Ti-containing zeolites , 1997 .

[25]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .