Influence of Organizational Learning for Multi-Agent Simulation based on an Adaptive Classifier System (特集 エージェントシミュレーションの最新動向)

[1]  Stewart W. Wilson State of XCS Classifier System Research , 1999, Learning Classifier Systems.

[2]  Keiki Takadama,et al.  Exploring XCS in multiagent environments , 2005, GECCO '05.

[3]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[4]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[5]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[6]  Takao Terano,et al.  Multi-agent learning approach to dynamic security patrol routing , 2011, SICE Annual Conference 2011.

[7]  Stewart W. Wilson,et al.  Noname manuscript No. (will be inserted by the editor) Learning Classifier Systems: A Survey , 2022 .

[8]  Jason H. Moore,et al.  Learning classifier systems: a complete introduction, review, and roadmap , 2009 .

[9]  Takao Terano,et al.  Learning Classifier Systems Meet Multiagent Environments , 2000, IWLCS.

[10]  Terence C. Fogarty,et al.  Social Simulation Using a Multi-agent Model Based on Classifier Systems: The Emergence of Vacillating Behaviour in the "El Farol" Bar Problem , 2001, IWLCS.

[11]  Sonia Schulenburg,et al.  Collective behavior based hierarchical XCS , 2007, GECCO '07.

[12]  Shinichi Nakasuka,et al.  Robustness in organizational-learning oriented classifier system , 2002, Soft Comput..

[13]  Takao Terano,et al.  Meeting the Challenge of Social Problems via Agent-Based Simulation , 2003 .