Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

[1]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[2]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[3]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[4]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[5]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[6]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[7]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[8]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[9]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[10]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[11]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[12]  Wei Lu,et al.  Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. , 2015, Small.

[13]  D. H. Mash,et al.  Light-emitting diodes , 1977, Nature.

[14]  A Gholinia,et al.  WSe₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. , 2015, Nano letters.

[15]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[16]  A Gholinia,et al.  Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. , 2012, Nature materials.

[17]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[18]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[19]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[20]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[21]  Andres Castellanos-Gomez,et al.  Photocurrent Generation with Two‐Dimensional van der Waals Semiconductors , 2015 .

[22]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[23]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[24]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[25]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[26]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[27]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[28]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[29]  K. L. Shepard,et al.  Multicomponent fractional quantum Hall effect in graphene , 2010, 1010.1179.

[30]  David B. Geohegan,et al.  Equally E ffi cient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS 2 / WS 2 Heterostructures , 2015 .

[31]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[32]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[33]  Qing Zhang,et al.  Few-layer MoS2: a promising layered semiconductor. , 2014, ACS nano.

[34]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[35]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[36]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[37]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[38]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[40]  Lain‐Jong Li,et al.  Emerging energy applications of two-dimensional layered transition metal dichalcogenides , 2015 .

[41]  Jing Lu,et al.  Modelling of stacked 2D materials and devices , 2015 .

[42]  A. Mazur,et al.  Band structure of MoS 2 , MoSe 2 , and α − MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations , 2001 .

[43]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[44]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[45]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[46]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[47]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[48]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[49]  S. Tiwari,et al.  Ultrafast response of monolayer molybdenum disulfide photodetectors , 2015, Nature Communications.

[50]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[51]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[52]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[53]  Helmuth Berger,et al.  Mono- and bilayer WS2 light-emitting transistors. , 2014, Nano letters.

[54]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[55]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[56]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[57]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[58]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[59]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[60]  H. Schmidt,et al.  Electronic Transport Properties of Transition Metal Dichalcogenide Field‐Effect Devices: Surface and Interface Effects , 2015 .

[61]  P. Kim,et al.  Heterostructures based on inorganic and organic van der Waals systems , 2014 .

[62]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[63]  Ning Dai,et al.  Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. , 2016, ACS nano.

[64]  H. Schmidt,et al.  Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. , 2015, Chemical Society reviews.

[65]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[66]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[67]  Hong Jiang Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach , 2012 .

[68]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[69]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[70]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[71]  A. Neto,et al.  Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides , 2013, 1305.6672.

[72]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[73]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[74]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[75]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[76]  M. I. Katsnelson,et al.  Strong Coulomb drag and broken symmetry in double-layer graphene , 2012, Nature Physics.

[77]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[78]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[79]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[80]  Ali Javey,et al.  Near‐Unity Photoluminescence Quantum Yield in MoS2. , 2016 .

[81]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[82]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[83]  Yi Liu,et al.  Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.

[84]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[85]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[86]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[87]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[88]  K. Loh,et al.  Two-dimensional dichalcogenides for light-harvesting applications , 2015 .

[89]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[90]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[91]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[92]  Andres Castellanos-Gomez,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. , 2014, Nature communications.

[93]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[94]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[95]  Libai Huang,et al.  Exciton dynamics and annihilation in WS2 2D semiconductors. , 2015, Nanoscale.

[96]  Zhihao Yu,et al.  Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS2 , 2014 .

[97]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[98]  L. Caputi,et al.  The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications , 2017, Nanomaterials.

[99]  K. Shepard,et al.  Graphene based heterostructures , 2012 .

[100]  Jung Ho Yu,et al.  Vertical heterostructure of two-dimensional MoS₂ and WSe₂ with vertically aligned layers. , 2015, Nano letters.

[101]  F. Xia,et al.  Van der Waals heterostructures: Stacked 2D materials shed light. , 2015, Nature materials.

[102]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[103]  J. Kong,et al.  High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. , 2016, ACS nano.

[104]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[105]  Martin Pumera,et al.  Two‐Dimensional Transition Metal Dichalcogenides in Biosystems , 2015 .

[106]  M. Koperski,et al.  Excitonic resonances in thin films of WSe2: from monolayer to bulk material. , 2015, Nanoscale.

[107]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[108]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[109]  K. Novoselov,et al.  Resonant tunnelling and negative differential conductance in graphene transistors , 2013, Nature Communications.

[110]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[111]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[112]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[113]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.