Non-linear model reduction for the Navier-Stokes equations using residual DEIM method
暂无分享,去创建一个
Juan Du | Christopher C. Pain | Fangxin Fang | Ionel Michael Navon | Andrew G. Buchan | Dunhui Xiao | G. Hu | Ionel M. Navon | C. Pain | F. Fang | D. Xiao | Juan Du | A. Buchan | G. Hu
[1] David A. Ham,et al. POD reduced-order unstructured mesh modeling applied to 2D and 3D fluid flow , 2013, Comput. Math. Appl..
[2] C.R.E. de Oliveira,et al. Three-dimensional unstructured mesh ocean modelling , 2005 .
[3] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[4] K. Willcox. Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .
[5] Keinosuke Fukunaga,et al. Introduction to statistical pattern recognition (2nd ed.) , 1990 .
[6] Nadine Aubry,et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.
[7] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[8] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[9] Karl Pearson F.R.S.. LIII. On lines and planes of closest fit to systems of points in space , 1901 .
[10] Jens L. Eftang,et al. An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .
[11] Ionel M. Navon,et al. A dual‐weighted trust‐region adaptive POD 4D‐VAR applied to a finite‐element shallow‐water equations model , 2011 .
[12] Andrew J. Majda,et al. Strategies for Model Reduction: Comparing Different Optimal Bases , 2004 .
[13] Ramon Codina,et al. Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations , 2013 .
[14] Lawrence Sirovich,et al. Karhunen–Loève procedure for gappy data , 1995 .
[15] Ionel M. Navon,et al. A Dual-Weighted Approach to Order Reduction in 4DVAR Data Assimilation , 2008, Monthly Weather Review.
[16] J. Peraire,et al. An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .
[17] Danny C. Sorensen,et al. A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..
[18] Juan Du,et al. Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods , 2013, J. Comput. Phys..
[19] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[20] Ionel M. Navon,et al. Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair , 2013 .
[21] Y. Maday,et al. Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.
[22] Arnold W. Heemink,et al. Model-Reduced Variational Data Assimilation , 2006 .
[23] Gianluigi Rozza,et al. Reduced Basis Method for Parametrized Elliptic Optimal Control Problems , 2013, SIAM J. Sci. Comput..
[24] C. Farhat,et al. Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .
[25] I. Jolliffe. Principal Component Analysis , 2002 .
[26] G. Rozza,et al. Model Order Reduction by geometrical parametrization for shape optimization in computational fluid dynamics , 2010 .
[27] Ionel M. Navon,et al. A reduced‐order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition , 2007 .
[28] Razvan Stefanescu,et al. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model , 2012, J. Comput. Phys..
[29] Ionel M. Navon,et al. A dual‐weighted trust‐region adaptive POD 4‐D Var applied to a finite‐volume shallow water equations model on the sphere , 2012 .
[30] M. Altaf. Model reduced variational data assimilation for shallow water flow models , 2011 .
[31] Saifon Chaturantabut. Dimension reduction for unsteady nonlinear partial differential equations via empirical interpolation methods , 2009 .
[32] Gianluigi Rozza,et al. Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .
[33] A. Quarteroni,et al. Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .