Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries

Lithium‐sulfur (Li‐S) batteries suffer from rapid capacity decay and low energy efficiency because of the low solubility of lithium sulfide (Li2S) in organic solvents and the intrinsic polysulfide shuttle phenomenon. Here, a novel additive, phosphorus pentasulfide (P2S5) in organic electrolyte, is reported to boost the cycling performance of Li‐S batteries. The function of the additive is two‐fold: 1) P2S5 promotes the dissolution of Li2S and alleviates the loss of capacity caused by the precipitation of Li2S and 2) P2S5 passivates the surface of lithium metal and therefore eliminates the polysulfide shuttle phenomenon. A Li‐S test cell demonstrates a high reversible capacity of 900–1350 mAh g−1 and a high coulombic efficiency of ≥90% for at least 40 stable cycles at 0.1 C.

[1]  Jeffrey Read,et al.  A new direction for the performance improvement of rechargeable lithium/sulfur batteries , 2012 .

[2]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[3]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[4]  Guangyuan Zheng,et al.  Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. , 2011, Nano letters.

[5]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[6]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[7]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[8]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature communications.

[9]  Zhenguo Yang,et al.  Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. , 2011, Physical chemistry chemical physics : PCCP.

[10]  Takeshi Kobayashi,et al.  Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 , 2011 .

[11]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[12]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[13]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[14]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[15]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[16]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[17]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[18]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[19]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[20]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[21]  Zhen Zhou,et al.  Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites , 2009 .

[22]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[23]  Z. Fu,et al.  Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries , 2007 .

[24]  A. Hayashi Preparation and Characterization of Glassy Materials for All-Solid-State Lithium Secondary Batteries(Review) , 2007 .

[25]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[26]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[27]  B. Jung,et al.  Capacity Fading Mechanisms on Cycling a High-Capacity Secondary Sulfur Cathode , 2004 .

[28]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[29]  Yong-Mook Kang,et al.  Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries , 2004 .

[30]  A. Yamada,et al.  Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system , 2004 .

[31]  M. Kis-Varga,et al.  Raman and x-ray diffraction studies of nanometric Sn2P2S6 crystals , 2003 .

[32]  J. Shim,et al.  The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance , 2002 .

[33]  W. Carrillo‐Cabrera,et al.  Synthesis, crystal structure, magnetism and vibrational spectrum of Dipotassium Iron(II) Hexathiodiphosphate(IV), K2Fe[P2S6] , 1994 .

[34]  N. Oyama,et al.  New organodisulfide—polyaniline composite cathode for secondary lithium battery , 1992 .

[35]  M. R. Palacín New British Standards , 1979 .

[36]  A. Müller,et al.  Investigation of the vibrational spectra of PS43−, CS32−, CS2Se2−, CSSe22−, CSe32−, BCl2Br and BClBr2 , 1973 .