Adaptive Domain Decomposition method for Saddle Point problem in Matrix Form

We introduce an adaptive domain decomposition (DD) method for solving saddle point problems defined as a block two by two matrix. The algorithm does not require any knowledge of the constrained space. We assume that all sub matrices are sparse and that the diagonal blocks are the sum of positive semi definite matrices. The latter assumption enables the design of adaptive coarse space for DD methods.

[1]  M. Benzi,et al.  Some Preconditioning Techniques for Saddle Point Problems , 2008 .

[2]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[3]  E. Sturler,et al.  Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .

[4]  Pierre Jolivet,et al.  An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method , 2017, SIAM J. Sci. Comput..

[5]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[6]  O. Widlund,et al.  Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .

[7]  M. Fortin,et al.  Preconditioned iteration for saddle-point systems with bound constraints arising in contact problems , 2013 .

[8]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[9]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[10]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[11]  Joachim Schöberl,et al.  An algebraic multigrid method for finite element discretizations with edge elements , 2002, Numer. Linear Algebra Appl..

[12]  Marcus Sarkis,et al.  Restricted Overlapping Balancing Domain Decomposition Methods and Restricted Coarse Problems for the Helmholtz Problem , 2007 .

[13]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[14]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[15]  R. Hiptmair,et al.  MULTIGRID METHOD FORH(DIV) IN THREE DIMENSIONS , 1997 .

[16]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[17]  D. Rixen,et al.  Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms , 2013 .

[18]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[19]  Jun Zhao,et al.  Overlapping Schwarz methods in H(curl) on polyhedral domains , 2002, J. Num. Math..

[20]  Eric de Sturler,et al.  Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..

[21]  S. Nepomnyaschikh Mesh theorems on traces, normalizations of function traces and their inversion , 1991 .

[22]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[23]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..