Relativistically invariant quantum information

We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.

[1]  T. Rudolph,et al.  Classical and quantum communication without a shared reference frame. , 2003, Physical review letters.

[2]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[3]  Quantum Information and Special Relativity , 2003, quant-ph/0301065.

[4]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[5]  Paolo Zanardi Stabilizing quantum information , 2000 .

[6]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[7]  E. Bagan,et al.  Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .

[8]  P. Shor,et al.  Entanglement assisted capacity of the broadband Lossy channel. , 2003, Physical review letters.

[9]  A Peres,et al.  Entangled quantum states as direction indicators. , 2001, Physical review letters.

[10]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[11]  E Bagan,et al.  Aligning reference frames with quantum states. , 2001, Physical review letters.

[12]  E. Burt,et al.  Comment on "Quantum clock synchronization based on shared prior entanglement". , 2001, Physical review letters.

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  Wu-Ki Tung,et al.  Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions in Classical and Quantum Physics , 1985 .

[15]  Robert W. Spekkens,et al.  Optimal measurements for relative quantum information , 2004 .

[16]  Adan Cabello,et al.  Greenberger-Horne-Zeilinger-like proof of Bell's theorem involving observers who do not share a reference frame , 2003 .

[17]  Colin P. Williams,et al.  Jozsa et al. Reply , 2001 .

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[20]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[21]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[22]  Colin P. Williams,et al.  Reply: Jozsa et al. , 2001 .

[23]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[24]  Wu-Ki Tung,et al.  Group Theory in Physics , 1985 .

[25]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[26]  Charles Santori,et al.  Enhanced single-photon emission from a quantum dot in a micropost microcavity , 2003 .

[27]  Elliptic Rydberg states as direction indicators , 2003, quant-ph/0305171.

[28]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[29]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .