SOLID ELEMENTS WITH ROTATIONAL DOFs BY EXPLICIT HYBRID STABILIZATION

[1]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[2]  Robert L. Harder,et al.  A refined four-noded membrane element with rotational degrees of freedom , 1988 .

[3]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[4]  Edward L. Wilson,et al.  Thick shell and solid finite elements with independent rotation fields , 1991 .

[5]  On geometric invariance of tet4rx , 1992 .

[6]  S. Atluri,et al.  On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner’s variational principle , 1985 .

[7]  Satya N. Atluri,et al.  On Some New General and Complementary Energy Theorems for the Rate Problems in Finite Strain. Classical Elastoplasticity , 1980 .

[8]  C. L. Chow,et al.  Efficient hybrid/mixed elements using admissible matrix formulation , 1992 .

[9]  Theodore H. H. Pian,et al.  Alternative ways for formulation of hybrid stress elements , 1982 .

[10]  Amin Ghali,et al.  Hybrid Plane Quadrilateral Element with Corner Rotations , 1993 .

[11]  K. Y. Sze,et al.  Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation , 1992 .

[12]  K. Y. Sze,et al.  AN EFFICIENT QUADRILATERAL PLANE ELEMENT WITH DRILLING DEGREES OF FREEDOM USING ORTHOGONAL STRESS MODES , 1992 .

[13]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[14]  K. Y. Sze,et al.  Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes , 1994 .

[15]  Richard H. MacNeal,et al.  Toward a defect-free four-noded membrane element , 1989 .

[16]  Ted Belytschko,et al.  Mixed variational principles and stabilization of spurious modes in the 9-node element , 1987 .

[17]  K. Y. Sze,et al.  A novel approach for devising higher‐order hybrid elements , 1993 .

[18]  Amin Ghali,et al.  A hybrid brick element with rotational degrees of freedom , 1993 .

[19]  E. Reissner Some aspects of the variational principles problem in elasticity , 1986 .

[20]  Bruce M. Irons,et al.  Quadrature rules for brick based finite elements , 1971 .

[21]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[22]  C. L. Chow,et al.  On invariance of isoparametric hybrid/mixed elements , 1992 .

[23]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[24]  M. A. Aminpour,et al.  An assumed-stress hybrid 4-node shell element with drilling degrees of freedom , 1992 .

[25]  Robert D. Cook,et al.  Solid elements with rotational degrees of freedom: Part II—tetrahedron elements , 1991 .

[26]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[27]  W. Flügge,et al.  Tensor Analysis and Continuum Mechanics , 1972 .

[28]  T. P. Pawlak,et al.  Solid elements with rotational degress of freedom. II Tetrahedron elements , 1991 .

[29]  K. Y. Sze,et al.  An explicit hybrid-stabilized 9-node Lagrangian shell element , 1994 .

[30]  Edward L. Wilson,et al.  A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .

[31]  Robert D. Cook,et al.  On improved hybrid finite elements with rotational degrees of freedom , 1989 .

[32]  K. Y. Sze,et al.  Control of spurious mechanisms for 20-node and transition sub-integrated hexahedral elements , 1994 .