Construction of wiretap codes from ordinary channel codes

From an arbitrary given channel code over a discrete or Gaussian memoryless channel, we construct a wiretap code with the strong security. Our construction can achieve the wiretap capacity under mild assumptions. The key tool is the new privacy amplification theorem bounding the eavesdropped information in terms of the Gallager function.

[1]  Ryutaroh Matsumoto Problems in application of LDPC codes to information reconciliation in quantum key distribution protocols , 2009, ArXiv.

[2]  J. Barros,et al.  Strong Secrecy for Wireless Channels , 2008 .

[3]  Masahito Hayashi Exponential evaluations in universal random privacy amplification , 2009, ArXiv.

[4]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[5]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[6]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[7]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[8]  Philippe Piret,et al.  Algebraic constructions of Shannon codes for regular channels , 1982, IEEE Trans. Inf. Theory.

[9]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[10]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[11]  R. Gallager Information Theory and Reliable Communication , 1968 .

[12]  J. Barros,et al.  LDPC codes for the Gaussian wiretap channel , 2009 .

[13]  Marten van Dijk On a special class of broadcast channels with confidential messages , 1997, IEEE Trans. Inf. Theory.

[14]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[15]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[16]  Masahito Hayashi,et al.  General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel , 2006, IEEE Transactions on Information Theory.

[17]  Masahito Hayashi,et al.  General non-asymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to wire-tap channel , 2005, ArXiv.

[18]  Shigeki Miyake,et al.  Construction of wiretap channel codes by using sparse matrices , 2009, 2009 IEEE Information Theory Workshop.

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  Shlomo Shamai,et al.  Information Theoretic Security , 2009, Found. Trends Commun. Inf. Theory.

[21]  G. David Forney Trellis shaping , 1992, IEEE Trans. Inf. Theory.

[22]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[23]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[24]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[25]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[26]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.