Effect of ordering on stacking fault energy of VNiFeCo high entropy alloys

[1]  I. Tanaka,et al.  Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy , 2019, Physical Review Materials.

[2]  A. Dong,et al.  FCC-L12 ordering transformation in equimolar FeCoNiV multi-principal element alloy , 2019, Materials & Design.

[3]  G. M. Stocks,et al.  Local-environment dependence of stacking fault energies in concentrated solid-solution alloys , 2019, npj Computational Materials.

[4]  M. Koslowski,et al.  Effects of the stacking fault energy fluctuations on the strengthening of alloys , 2019, Acta Materialia.

[5]  D. Ponge,et al.  Ultrastrong Medium‐Entropy Single‐Phase Alloys Designed via Severe Lattice Distortion , 2018, Advanced materials.

[6]  Xingyu Gao,et al.  A structural modeling approach to the solid-solution materials , 2018 .

[7]  Yuji Ikeda,et al.  Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles , 2018, Entropy.

[8]  R. Ritchie,et al.  Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys , 2018, Proceedings of the National Academy of Sciences.

[9]  M. A. Zaeem,et al.  Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys , 2017 .

[10]  G. M. Stocks,et al.  Stacking fault energies of face-centered cubic concentrated solid solution alloys , 2017 .

[11]  C. Tasan,et al.  A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior , 2017 .

[12]  C. Liu,et al.  The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys , 2017 .

[13]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[14]  H. Sehitoglu,et al.  Slip nucleation in single crystal FeNiCoCrMn high entropy alloy , 2016 .

[15]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[16]  C. Tasan,et al.  Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys , 2015 .

[17]  C. Koch,et al.  Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo , 2015 .

[18]  Paul R. C. Kent,et al.  Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys , 2015 .

[19]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[20]  Douglas L. Irving,et al.  Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy , 2013 .

[21]  P. Liaw,et al.  High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability , 2013, Scientific Reports.

[22]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[23]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[24]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[25]  Levente Vitos,et al.  Total-energy method based on the exact muffin-tin orbitals theory , 2001 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  G. M. Stocks,et al.  The “disordered local moment” picture of itinerant magnetism at finite temperatures , 1984 .

[28]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .