Optimal control of batch cooling crystallizers by using genetic algorithm

Abstract The formation of crystals from solutions plays a key role in various industrial applications. In this study, a new approach is presented into the optimal control of batch cooling crystallizers through a genetic algorithm. The Population balance is formularized for a typical batch crystallizer. The objective functions considered here are related to quality of products at the end of the batch. These functions are objective function of maximum mean weight size, closeness to the specified value and minimum coefficient of variation. By using an optimization algorithm (genetic algorithm), the minimum and maximum values of the objective function the input temperature parameter are obtained. The obtained results show that various trajectories can be used for cooling batch crystallizer based on objective functions. This method is applied for the potassium-nitrate system.

[1]  Arthur Jutan,et al.  Optimal control of a batch cooling seeded crystallizer , 2005 .

[2]  Jaroslav Nývlt,et al.  Programmed cooling of batch crystallizers , 1988 .

[3]  Alan Jones,et al.  Optimal operation of a batch cooling crystallizer , 1974 .

[4]  Paul M.J. Van den Hof,et al.  A comparison of nonlinear observers for output feedback model-based control of seeded batch crystallization processes , 2011 .

[5]  A. Seidel-Morgenstern,et al.  An efficient numerical technique for solving one-dimensional batch crystallization models with size-dependent growth rates , 2009 .

[6]  Ali Abbas,et al.  Antisolvent crystallization: Model identification, experimental validation and dynamic simulation , 2008 .

[7]  J. W. Mullin,et al.  Programmed cooling crystallization of potassium sulphate solutions , 1974 .

[8]  Davood Domiri Ganji,et al.  Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow , 2015 .

[9]  Amornchai Arpornwichanop,et al.  Improvement of batch crystallization control under uncertain kinetic parameters by model predictive control , 2011 .

[10]  Richard D. Braatz,et al.  Robust batch control of crystallization processes , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[11]  D. L. Ma,et al.  Optimal seeding in batch crystallization , 1999 .

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  S. Chakraborty,et al.  Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices. , 2014, Analytica chimica acta.

[14]  Experimental and numerical study of multiphase flow in new wire gauze with high capacity structured packing , 2016 .

[15]  Jeffrey D. Ward,et al.  Population balance modeling in Simulink: PCSS , 2008, Comput. Chem. Eng..

[16]  Misagh Imani,et al.  Investigation of film cooling on nose cone by a forward facing array of micro-jets in Hypersonic flow , 2015 .

[17]  Jose Alvarez-Ramirez,et al.  Fractal analysis of crystallization slurry images , 2010 .

[18]  Younes Amini,et al.  Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique , 2015 .

[19]  J. Karimi-Sabet,et al.  Experimental and Numerical Simulation of Dry Pressure Drop in High‐Capacity Structured Packings , 2016 .

[20]  Davood Domiri Ganji,et al.  Comparison of the single/multi transverse jets under the influence of shock wave in supersonic crossflow , 2016 .

[21]  O. Jahanian,et al.  Influence of the angle of incident shock wave on mixing of transverse hydrogen micro-jets in supersonic crossflow , 2015 .

[22]  Evaristo Chalbaud Biscaia,et al.  Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors , 2003, Comput. Chem. Eng..

[23]  M. G. Bandpy,et al.  The Influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger , 2016 .

[24]  M. B. Ajinkya,et al.  ON THE OPTIMAL OPERATION OF CRYSTALLIZATION PROCESSES , 1974 .

[25]  H. B. Matthews,et al.  Batch crystallization of a photochemical: Modeling, control, and filtration , 1998 .

[26]  M. Fattahi,et al.  Neural network modeling the effect of oxygenate additives on the performance of Pt–Sn/γ-Al2O3 catalyst in propane dehydrogenation , 2013, Applied Petrochemical Research.

[27]  Lin Niu,et al.  Model Identification and Control Strategies for Batch Cooling Crystallizers , 2015, 2015 8th International Symposium on Computational Intelligence and Design (ISCID).

[28]  N. Kubota,et al.  Reliable and selective crystallization of the metastable α-form glycine by seeding , 2004 .

[29]  D. L. Ma,et al.  IDENTIFICATION OF KINETIC PARAMETERS IN MULTIDIMENSIONAL CRYSTALLIZATION PROCESSES , 2002 .

[30]  Karin Ackermann,et al.  Unit Operations Of Chemical Engineering , 2016 .

[31]  Sohrab Rohani,et al.  On-line optimal control of a seeded batch cooling crystallizer , 2003 .

[32]  On‐Line control of supersaturation in a continuous cooling KCL crystallizer , 1995 .

[33]  Younes Amini,et al.  Shear‐rate‐dependent rheology effects on mass transport and surface reactions in biomicrofluidic devices , 2015 .

[34]  L. Biegler,et al.  Dynamic optimization of a batch cooling crystallization process , 1999 .

[35]  D. Ganji,et al.  Investigation of thermal radiation on traditional Jeffery–Hamel flow to stretchable convergent/divergent channels , 2015 .

[36]  Jörg Raisch,et al.  Control of batch crystallization—A system inversion approach , 2006 .

[37]  R. Moradi,et al.  Air gap membrane distillation for enrichment of H218O isotopomers in natural water using poly(vinylidene fluoride) nanofibrous membrane , 2016 .