Electrochemical cell for neutron reflectometry studies of the structure of ionic liquids at electrified interface.

We describe the design and use of a closed three-electrode electrochemical cell for neutron reflectometry studies of the structure of the electrical double-layer in ionic liquids. A transparent glass counter electrode was incorporated to allow easy monitoring of any gas bubbles trapped in the cell. A 100 mm diameter silicon wafer polished to 0.1 nm rms roughness coated with gold over a chromium adhesion layer was used as the working electrode. The utility of the cell was demonstrated during neutron reflectometry measurements of the ultrahigh purity ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C(4)mpyr][NTf(2)]) at two different applied potentials.

[1]  B. Minofar,et al.  X-ray reflectometry studies on the effect of water on the surface structure of [C4mpyr][NTf2] ionic liquid. , 2009, Physical chemistry chemical physics : PCCP.

[2]  F. Leermakers,et al.  Room-temperature ionic liquids: excluded volume and ion polarizability effects in the electrical double-layer structure and capacitance. , 2009, Physical review letters.

[3]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[4]  R. Atkin,et al.  AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA Ionic Liquids with Au(111) , 2009 .

[5]  M. Bazant,et al.  Nonlinear electrokinetics at large voltages , 2009 .

[6]  A. Bond,et al.  Aluminium speciation in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide/AlCl3 mixtures. , 2009, Chemistry.

[7]  B. Ocko,et al.  Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface , 2008, Science.

[8]  J. Kolafa,et al.  Aqueous solutions of ionic liquids: study of the solution/vapor interface using molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[9]  Stewart K. Reed,et al.  Electrochemical charge transfer at a metallic electrode: a simulation study. , 2008, The Journal of chemical physics.

[10]  Douglas R. MacFarlane,et al.  Electrodeposition from Ionic Liquids , 2008 .

[11]  K. B. Oldham A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface , 2008 .

[12]  Po-Yu Chen,et al.  Electrochemical study and electrodeposition of manganese in the hydrophobic butylmethylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide room-temperature ionic liquid , 2007 .

[13]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[14]  R. Atkin,et al.  Structure in Confined Room-Temperature Ionic Liquids , 2007 .

[15]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  S. Balasubramanian,et al.  Layering at an ionic liquid-vapor interface: a molecular dynamics simulation study of [bmim][PF6]. , 2006, Journal of the American Chemical Society.

[17]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[18]  B. Ocko,et al.  Surface layering in ionic liquids: an X-ray reflectivity study. , 2005, Journal of the American Chemical Society.

[19]  Hiroyuki Ohno,et al.  Electrochemical Aspects of Ionic Liquids: Ohno/Electrochemical Aspects of Ionic Liquids , 2005 .

[20]  Karol Putyera,et al.  Dekker Encyclopedia of Nanoscience and Nanotechnology , 2004 .

[21]  J. Webster,et al.  Surface ordering of amphiphilic ionic liquids. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[22]  P. Madden,et al.  Molecular dynamics simulations of the liquid–vapor interface of a molten salt. I. Influence of the interaction potential , 2001 .

[23]  K. R. Seddon,et al.  Molecular layering and local order in thin films of 1-alkyl-3-methylimidazolium ionic liquids using X-ray reflectivity , 2001 .

[24]  Omar Teschke,et al.  Interfacial aqueous solutions dielectric constant measurements using atomic force microscopy , 2000 .

[25]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[26]  D. Shoesmith,et al.  Electrochemical Modification of the Passive Oxide Layer on a Ti Film Observed by In Situ Neutron Reflectometry , 1999 .

[27]  A. Robert Hillman,et al.  A neutron reflectivity study of [Os(bipy)(2)(PVP)(10)Cl](+) polymer film modified electrodes: Effect of pH and counterion , 1998 .

[28]  A. Hillman,et al.  Dynamic Neutron Reflectivity Measurements during Redox Switching of Nickel Hydroxide Films , 1997 .

[29]  Charles F. Majkrzak,et al.  Neutron reflectometry studies of surface oxidation , 1994 .

[30]  D. F. Evans,et al.  Double-layer and solvation forces measured in a molten salt and its mixtures with water , 1988 .

[31]  C. Koval,et al.  Ferrocene as an internal standard for electrochemical measurements , 1980 .

[32]  A. Nelson,et al.  Platypus: a time-of-flight neutron reflectometer at Australia’s new research reactor , 2006 .

[33]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[34]  J. Wadhawan,et al.  Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids , 2000 .

[35]  A. Hillman,et al.  In situ neutron reflectivity studies of electroactive films , 1992 .

[36]  P. Delahay,et al.  Double Layer and Electrode Kinetics , 1965 .